2. CNN卷积网络-前向传播算法
1. CNN卷积网络-初识
2. CNN卷积网络-前向传播算法
3. CNN卷积网络-反向更新
1. 前言
我们已经了解了CNN的结构,CNN主要结构有输入层,一些卷积层和池化层,后面是DNN全连接层,最后是Softmax激活函数的输出层。这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构。图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我们上面最后的用Softmax激活函数的输出层。
2. 卷积层的前向传播
还是以上面的图片作为例子。
先考虑最简单的,样本都是二维的黑白图片。这样输入层\(X\)就是一个矩阵,矩阵的值等于图片的各个像素位置的值。这时和卷积层相连的卷积核\(W\)就也是矩阵。
如果样本都是有RGB的彩色图片,这样输入\(X\)就是3个矩阵,即分别对应\([R,G,B]\)的矩阵,或者说是一个张量。这时和卷积层相连的卷积核\(W\)就也是张量,对应的最后一维的维度为3.即每个卷积核都是3个子矩阵组成。
同样的方法,对于3D的彩色图片之类的样本,我们的输入\(X\)可以是4维,5维的张量,那么对应的卷积核W也是个高维的张量。
不管维度多高,对于我们的输入,前向传播的过程可以表示为:
\[
a^2= \sigma(z^2) = \sigma(a^1*W^2 +b^2)
\]
其中,上标代表层数,星号代表卷积,而\(b\)代表我们的偏倚, \(\sigma\)为激活函数,这里一般都是\(ReLU\)。
和DNN的前向传播比较一下,其实形式非常的像,只是我们这儿是张量的卷积,而不是矩阵的乘法。同时由于\(W\)是张量,那么同样的位置,\(W\)参数的个数就比DNN多很多了。
为了简化我们的描述,本文后面如果没有特殊说明,我们都默认输入是3维的张量,即用\(RBG\)可以表示的彩色图片。
这里需要我们自己定义的CNN模型参数是:
- 一般我们的卷积核不止一个,比如有\(K\)个,那么我们输入层的输出,或者说第二层卷积层的对应的输入就\(K\)个。
- 卷积核中每个子矩阵的的大小,一般我们都用子矩阵为方阵的卷积核,比如\([F,F]\)的子矩阵。
- 填充padding(以下简称P),我们卷积的时候,为了可以更好的识别边缘,一般都会在输入矩阵在周围加上若干圈的0再进行卷积,加多少圈则\(P\)为多少。
- 步幅stride(以下简称S),即在卷积过程中每次移动的像素距离大小。
3. 池化层的前向传播
池化层的处理逻辑是比较简单的,我们的目的就是对输入的矩阵进行缩小概括。比如输入的若干矩阵是\([N,N]\)维的,而我们的池化大小是\([k,k]\)的区域,则输出的矩阵都是\([N_k,N_k]\)维的。
这里需要需要我们定义的CNN模型参数是:
- 池化区域的大小\(k\)
- 池化的标准,一般是MAX或者Average。
4. 全连接层的前向传播
由于全连接层就是普通的DNN模型结构,因此我们可以直接使用DNN的前向传播算法逻辑,即:
\[
a^l = \sigma(z^l) = \sigma(W^la^{l-1} + b^l)
\]
5. 总结
有了上面的基础,我们现在总结下CNN的前向传播算法。
输入:1个图片样本,CNN模型的层数\(L\)和所有隐藏层的类型,对于卷积层,要定义卷积核的大小\(K\),卷积核子矩阵的维度\(F\),填充大小\(P\),步幅\(S\)。对于池化层,要定义池化区域大小k和池化标准(MAX或Average),对于全连接层,要定义全连接层的激活函数(输出层除外)和各层的神经元个数。
输出:CNN模型的输出\(a_L\)
- 根据输入层的填充大小\(P\),填充原始图片的边缘,得到输入张量\(a_1\)。
- 初始化所有隐藏层的参数\(W,b\)
- \(for\;\;l=2\;\;to\;\;L-1\):
- 如果第\(l\)层是卷积层,则输出为\(a^l= ReLU(z^l) = ReLU(a^{l-1}*W^l +b^l)\)
- 如果第\(l\)层是池化层,则输出为\(a_l=pool(a_{l-1})\), 这里的pool指按照池化区域大小\(k\)和池化标准将输入张量缩小的过程。
- 如果第\(l\)层是全连接层,则输出为\(a^l= \sigma(z^l) = \sigma(W^la^{l-1} +b^l)\)
- 对于输出层第\(L\)层:\(a^L= softmax(z^L) = softmax(W^La^{L-1} +b^L)\)
以上就是CNN前向传播算法的过程总结。有了CNN前向传播算法的基础,我们后面再来理解CNN的反向传播算法就简单多了。下一篇我们来讨论CNN的反向传播算法。
2. CNN卷积网络-前向传播算法的更多相关文章
- 3. CNN卷积网络-反向更新
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 如果读者详细的了解了DNN神经网络的反向更新,那对我们今天的学习会有很大的帮助.我们的CNN ...
- 1. CNN卷积网络-初识
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面, 它的神经元间的连接是 ...
- 卷积神经网络(CNN)前向传播算法
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...
- 卷积神经网络 cnnff.m程序 中的前向传播算法 数据 分步解析
最近在学习卷积神经网络,哎,真的是一头雾水!最后决定从阅读CNN程序下手! 程序来源于GitHub的DeepLearnToolbox 由于确实缺乏理论基础,所以,先从程序的数据流入手,虽然对高手来讲, ...
- 前向传播算法(Forward propagation)与反向传播算法(Back propagation)
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与 ...
- Pytorch从0开始实现YOLO V3指南 part3——实现网络前向传播
本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch ...
- 深度神经网络(DNN)模型与前向传播算法
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机 ...
- Deeplearning 两层cnn卷积网络详解
https://blog.csdn.net/u013203733/article/details/79074452 转载地址: https://www.cnblogs.com/sunshineatno ...
- 深度学习——前向传播算法和反向传播算法(BP算法)及其推导
1 BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到 ...
随机推荐
- java-容器-ArrayList
工作中经常会用到Java的集合类,最近不忙了,把相关知识总结一下,便于理解记忆. 打开java.util.ArrayList的源代码,首先映入眼帘的是@author Josh Bloch(相对于源码 ...
- 关于解锁美版Play市场
关于解锁美版Play市场(本帖已经突破了G+的500评论上限,如有问题请转载留言) 我对这个问题思考的很深刻也思考了很久,作为一个深度google脑残粉怎么能用不完整的Play Store呢?那人生岂 ...
- numpy、scipy、matplotlib、OpenCV安装及问题解决
1 numpy 概述 numpy是Numerical Python的缩写,释义为数值的Python numpy弥补了作为通用编程语言的Python在数值计算方面能力弱.速度慢的不足(numpy的底层是 ...
- C/C++/动态链接库DLL中函数的调用约定与名称修饰
参见:http://blog.twofei.com/cc/impl/calling-convension.html 调用约定(Calling Convention)是指在程序设计语言中为了实现函数调用 ...
- JAX-RS annotations
@Path("resource_path"):The @Path annotation defines the path to the base URL or resource_p ...
- Python小游戏、小程序
python 小游戏之摇骰子猜大小 python 实现一个双色球生成程序 python-循环与判断练习题
- stm32定时器PWM模式和输出比较模式
pwm模式是输出比较模式的一种特例,包含于输出比较模式中 /** @defgroup TIM_Output_Compare_and_PWM_modes * @{ */ #define TIM_OCMo ...
- C#基础第四天-作业答案-Hashtable-list<KeyValuePair>泛型实现名片
.Hashtable 实现 Hashtable table = new Hashtable(); while (true) { Console.WriteLine("------------ ...
- pycharm + selenium + python 提示 Unresolved reference 'webdriver' 解决办法
尝试使用python + selenium + pycharm 做自动化测试, 命令行pip install selenium 安装了selenium.但是使用pycharm 新建一个测试项目后并新建 ...
- There is no Action mapped for namespace / and action name . - [unknown location]
今天碰到了这个问题,原因不明白. 在webContent下建立了index.jsp后重启项目不报错了. 原因未知.