不做卷积,只是增加多层神经网络层。

#-*- encoding:utf-8 -*-
#!/usr/local/env python import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data def add_layer(inputs, in_size, out_size, activation_function=None):
W = tf.Variable(tf.random_normal([in_size, out_size]))
b = tf.Variable(tf.zeros([1, out_size]) + 0.01) Z = tf.matmul(inputs, W) + b
if activation_function is None:
outputs = Z
else:
outputs = activation_function(Z) return outputs if __name__ == "__main__": MNIST = input_data.read_data_sets("mnist", one_hot=True) learning_rate = 0.01
batch_size = 128
n_epochs = 70 X = tf.placeholder(tf.float32, [batch_size, 784])
Y = tf.placeholder(tf.float32, [batch_size, 10]) layer_dims = [784, 500, 500, 10]
layer_count = len(layer_dims)-1 # 不算输入层
layer_iter = X for l in range(1, layer_count): # layer [1,layer_count-1] is hidden layer
layer_iter = add_layer(layer_iter, layer_dims[l-1], layer_dims[l], activation_function=tf.nn.relu)
prediction = add_layer(layer_iter, layer_dims[layer_count-1], layer_dims[layer_count], activation_function=None) entropy = tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=prediction)
loss = tf.reduce_mean(entropy) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) init = tf.initialize_all_variables() with tf.Session() as sess:
sess.run(init) n_batches = int(MNIST.test.num_examples/batch_size)
for i in range(n_epochs):
for j in range(n_batches):
X_batch, Y_batch = MNIST.train.next_batch(batch_size)
_, loss_ = sess.run([optimizer, loss], feed_dict={X: X_batch, Y: Y_batch})
if i % 10 == 5 and j == 0:
print( "Loss of epochs[{0}]: {1}".format(i, loss_)) # test the model
n_batches = int(MNIST.test.num_examples/batch_size)
total_correct_preds = 0
for i in range(n_batches):
X_batch, Y_batch = MNIST.test.next_batch(batch_size)
preds = sess.run(prediction, feed_dict={X: X_batch, Y: Y_batch})
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y_batch, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) total_correct_preds += sess.run(accuracy) print ("Accuracy {0}".format(total_correct_preds/MNIST.test.num_examples))

deepNN的更多相关文章

  1. TensorFlow框架(4)之CNN卷积神经网络

    1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...

  2. Tensorflow之卷积神经网络(CNN)

    前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...

  3. Tensorflow卷积神经网络

    卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. ...

  4. Tensorflow模型加载与保存、Tensorboard简单使用

    先上代码: from __future__ import absolute_import from __future__ import division from __future__ import ...

  5. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  6. Tensorflow卷积神经网络[转]

    Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Te ...

  7. tensorflow下基于DNN实现实时分辨人脸微表情

    参加学校的国创比赛的时候,我们小组的项目有一部分内容需要用到利用摄像头实现实时检测人脸的表情,因为最近都在看深度学习方面的相关知识,所以就自己动手实现了一下这个小Demo.参考网上的资料,发现大部分是 ...

  8. 使用卷积神经网络CNN训练识别mnist

    算的的上是自己搭建的第一个卷积神经网络.网络结构比较简单. 输入为单通道的mnist数据集.它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图, ...

  9. TensorFlow车辆检测

    1.先在UIUC Image Database for Car Detection下载训练数据集. 下载地址:http://cogcomp.org/Data/Car/ 下载解压之后文件目录如图所示,这 ...

随机推荐

  1. 解决flume运行中的一个异常问题!

    今天在本地测试flume的exec  监控文件   分割的问题!!!遇到各种141异常问题! 怀疑是在切割文件的时候超过了监控文本的时间,导致flume异常退出,,,所以增加了keep-alive 时 ...

  2. 手动修改magento域名

    So it turns out the problem was that Apache didn't have write permissions to the WEBROOT/var directo ...

  3. Mac 重建 Spotlight 索引

    前言 最近发现很多 mac 用户反映自己的 mac 系统显示内存占用高达 200 多 Gb,可是实际上自己下载的应用程序根本没那么多,使用专业的内存扫描工具扫的结果跟系统本身显示的完全不一样.那么出现 ...

  4. SmartUpload类实现上传和下载

    实现文件的上传与下载,可以使用Java的I/O流的类来实现,也可以使用专业的上传.下载组件.这些组件提供了现成的类,程序员只需调用这些类中的方法即可实现文件的上传与下载.本章将向读者介绍如何应用jsp ...

  5. FreeSWITCH协议参数之自定义sip header

    一.主动发送 1. 加入sip_h_前缀 这样FreeSWITCH就能自动加上后面的扩展头. 2. 示例 <action application="set" data=&qu ...

  6. 最优化方法:共轭梯度法(Conjugate Gradient)

    http://blog.csdn.net/pipisorry/article/details/39891197 共轭梯度法(Conjugate Gradient) 共轭梯度法(英语:Conjugate ...

  7. Unix网络编程 之 基本套接字调用(一)

    Unix/Linux支持伯克利风格的套接字编程,它同一时候支持面向连接和面向无连接类型的套接字. 套接字最经常使用的一些系统调用: socket() bind() connect() listen() ...

  8. C#基础第五天-作业答案-用DataTable制作名片集

    .DataTable 实现 DataTable PersonCard = new DataTable(); //创建一个DataTable DataTable PersonCardCopy = new ...

  9. [golang] Glide 包管理

    一.概述 golang的包管理工具有很多,本篇幅主要介绍glide进行包管理. 二.安装及命令介绍 go get github.com/Masterminds/glide glide create|i ...

  10. adb 切换android输入法

    自动化测试执行时,使用了appium输入法,再手动使用时,需要进入设置里面进行切换.adb 也提供了一条命令使用命令切换 1.找出android里面有多少输入法:adb shell ime list ...