【CF736D】Permutations

题意:有一个未知长度为n的排列和m个条件,第i个条件$(a_i,b_i)$表示第$a_i$个位置上的数可以为$b_i$。保证最终合法的排列的个数是奇数。现在有m个询问,第i个询问是问你在去掉第i个条件后,最终合法的排列数是奇数还是偶数。

$n\le 2000,m\le min(C_n^2,500000)$

题解:神题,滚去学线代了。

因为在$\mod 2$意义下,-1和1相等,所以方案数是什么?如果把所给条件看成一个01矩阵的话,则答案就是这个矩阵对应的行列式的值!而去掉一个条件(a,b)后的答案是什么?1xor行列式的代数余子式$M_{ab}$的值!而题目保证所给矩阵是可逆的,所以我们可以应用性质:

$A^{*}=|A|A^{-1}$(其中$A^{*}$表示伴随矩阵,$A_{ij}=M_{ji}$)

所以只需要求出原矩阵的逆即可,可以采用高斯消元。因为是$\mod 2$意义下的,所以可以采用bitset优化,时间复杂度$O({n^3\over 32})$。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
int pa[500010],pb[500010];
bitset<4001> v[2005];
int n,m;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
} int main()
{
n=rd(),m=rd();
int i,j;
for(i=1;i<=m;i++) pa[i]=rd()-1,pb[i]=rd()-1,v[pa[i]][pb[i]]=1;
for(i=0;i<n;i++) v[i][i+n]=1;
for(i=0;i<n;i++)
{
if(!v[i][i])
{
for(j=i+1;j<n;j++) if(v[j][i]) break;
swap(v[j],v[i]);
}
for(j=0;j<n;j++) if(j!=i&&v[j][i]) v[j]^=v[i];
}
for(i=1;i<=m;i++)
{
if(v[pb[i]][pa[i]+n]) puts("NO");
else puts("YES");
}
return 0;
}

【CF736D】Permutations 线性代数+高斯消元的更多相关文章

  1. P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)

    题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...

  2. 【高斯消元】CDOJ1785 曜酱的线性代数课堂(三)

    高斯消元求行列式板子. #include<cstdio> #include<cmath> #include<algorithm> #include<cstri ...

  3. 【高斯消元】CDOJ1784 曜酱的线性代数课堂(二)

    高斯消元求矩阵秩板子. #include<cstdio> #include<cmath> #include<algorithm> #include<cstri ...

  4. 【高斯消元】CDOJ1783 曜酱的线性代数课堂(一)

    高斯消元求逆矩阵板子. #include<cstdio> #include<cmath> #include<algorithm> #include<cstri ...

  5. [高斯消元] POJ 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Des ...

  6. 高斯消元 分析 && 模板 (转载)

    转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #inc ...

  7. POJ 1830 开关问题(高斯消元)题解

    思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...

  8. poj1222(枚举or高斯消元解mod2方程组)

    题目链接: http://poj.org/problem?id=1222 题意: 有一个 5 * 6 的初始矩阵, 1 表示一个亮灯泡, 0 表示一个不亮的灯泡. 对 (i, j) 位置进行一次操作则 ...

  9. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

随机推荐

  1. UNIX环境编程学习笔记(2)——文件I/O之不带缓冲的 I/O

    lienhua342014-08-25 1 文件描述符 对于内核而言,所有打开的文件都通过文件描述符引用.文件描述符是一个非负整数.当打开一个现有文件或创建一个新文件时,内核向进程返回一个文件描述符. ...

  2. tftp

    Ubuntu 12.04 tftp 设置 1.sudo apt-get install tftp-hpa tftpd-hpa 2.修改/etc/default/tftpd-hpa TFTP_USERN ...

  3. 父组件中vuex方法更新state,子组件不能及时更新并渲染的解决方法

    场景: 我实际用到的是这样的,我父组件引用子组件related,父组件调用获取页面详情的方法,更新了state值related,子组件根据该related来渲染相关新闻内容,但是页面打开的时候总是先加 ...

  4. 磁盘IO概念及优化入门知识

    在数据库优化和存储规划过程中,总会提到IO的一些重要概念,在这里就详细记录一下,对这个概念的熟悉程度也决定了对数据库与存储优化的理解程度,以下这些概念并非权威文档,权威程度肯定就不能说了. 读/写IO ...

  5. 8. Django系列之上传文件与下载-djang为服务端,requests为客户端

    preface 运维平台新上线一个探测功能,需要上传文件到服务器上和下载文件从服务器上,那么我们就看看requests作为客户端,django作为服务器端怎么去处理? 对于静态文件我们不建议通过dja ...

  6. 使用php用IE打开指定网页

    $cmd = '"C:\Program Files\Internet Explorer\iexplore.exe" http://www.baidu.com'; exec($cmd ...

  7. ios的AutoresizingMask【转】

    在 UIView 中有一个autoresizingMask的属性,它对应的是一个枚举的值(如下),属性的意思就是自动调整子控件与父控件中间的位置,宽高. enum {   UIViewAutoresi ...

  8. C#------如何使用Swagger调试接口

    1.打开NuGet程序包 2.安装下面两个程序包 3.安装完后会出现SwaggerConfig.cs类,并修改里面的内容 代码: [assembly: PreApplicationStartMetho ...

  9. Spring JDBC入门

    Spring将替我们完成所有使用JDBC API进行开发的单调乏味的.底层细节处理工作. 操作JDBC时Spring可以帮我们做这些事情: 定义数据库连接参数,打开数据库连接,处理异常,关闭数据库连接 ...

  10. 在netbeans下使用调试PHP的插件XdeBug

    本人的开发环境: wamp最新官网wampserver2.2d-x32版. 下载点:http://nchc.dl.sourceforge.net/project/wampserver/WampServ ...