Gauss Fibonacci

Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 27    Accepted Submission(s): 5
Problem Description
Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. "
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.

Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.

Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)

The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.

 
Input
The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
Each of them will not exceed 1,000,000,000.
 
Output
For each line input, out the value described above.
 
SampleInput
2 1 4 100
2 0 4 100
 
SampleOutput
21
12 by yxt

用于构造斐波那契的矩阵为

1,1

1,0

设这个矩阵为A。

sum=f(b)+f(k+b)+f(2*k+b)+f(3*k+b)+........+f((n-1)*k+b)

<=>sum=A^b+A^(k+b)+A^(2*k+b)+A^(3*k+b)+........+A^((n-1)*k+b)

<=>sum=A^b+A^b*(A^k+A^2*k+A^3*k+.......+A^((n-1)*k))  (1)

设矩阵B为A^k;

那么(1)式为   sum=A^b+A^b*(B+B^2+B^3+......+B^(n-1));

显然,这时候就可以用二分矩阵做了,括号内的就跟POJ 3233的形式一样了。

代码如下

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
#define LL __int64
LL mod;
struct matrix
{
LL ma[][];
}init, res1, res2, ans;
matrix Mult(matrix x, matrix y)//矩阵相乘
{
matrix tmp;
int i, j, k;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
tmp.ma[i][j]=;
for(k=;k<;k++)
{
tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
}
}
}
return tmp;
}
matrix Pow(matrix x, int k) //矩阵快速幂关键
{
matrix tmp;
int i, j;
for(i=;i<;i++) for(j=;j<;j++) tmp.ma[i][j]=(i==j);
while(k)
{
if(k&) tmp=Mult(tmp,x);
x=Mult(x,x);
k>>=;
}
return tmp;
}
matrix Add(matrix x, matrix y)//矩阵相加
{
int i, j;
matrix tmp;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
tmp.ma[i][j]=(x.ma[i][j]+y.ma[i][j])%mod;
}
}
return tmp;
}
matrix Sum(matrix x, int k)//等比矩阵求和
{
if(k==) return x;
if(k&)
return Add(Sum(x,k-),Pow(x,k));
matrix tmp;
tmp=Sum(x,k>>);
return Add(tmp,Mult(tmp,Pow(x,k>>)));
}
int main()
{
int k, b, n;
while(scanf("%d%d%d%d",&k,&b,&n,&mod)!=EOF)
{
init.ma[][]=;
init.ma[][]=;
init.ma[][]=;
init.ma[][]=;
res1=Pow(init,b);
res2=Pow(init,k);
ans=Add(res1,Mult(res1,Sum(res2,n-)));
printf("%I64d\n",ans.ma[][]);
}
return ;
}

HDU 1588 Gauss Fibonacci(矩阵快速幂)的更多相关文章

  1. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  2. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  3. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  4. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  5. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  6. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  7. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  8. 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...

  9. HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others)    ...

随机推荐

  1. 关于PATH_INFO

    nginx支持PATH_INFO? 想让nginx支持PATH_INFO,首先需要知道什么是pathinfo,为什么要用pathinfo? pathinfo不是nginx的功能,pathinfo是ph ...

  2. ros 编译包含脚本文件以及launch文件

    目录结构如下: 修改CMakeLists.txt文件 install(PROGRAMS scripts/initial_pos.py DESTINATION ${CATKIN_PACKAGE_BIN_ ...

  3. 更换主机后SSH无法登录的问题

    之前通过SSH远程一台机器(起个名字:cc),某一天把cc重装了一下系统,再SSH时显示密钥验证失败: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ...

  4. python 获取本地语言和编码的代码

    #! /usr/bin/env python # encoding=utf8 import locale language, encoding = locale.getdefaultlocale() ...

  5. Windows 上安装 MySQL

    Windows 上安装 MySQL https://www.mysql.com/downloads/ 1.下载MySQL安装包(官网下载链接): 选择 DOWNLOADS ——> Communi ...

  6. 模版层Template layer

    每一个Web框架都需要一种很便利的方法用于动态生成HTML页面. 最常见的做法是使用模板. 模板包含所需HTML页面的静态部分,以及一些特殊的模版语法,用于将动态内容插入静态部分. 说白了,模板层就是 ...

  7. 【转】QT获取系统时间,以及设置日期格式

    http://blog.csdn.net/zzk197/article/details/7498593 例如我要在一个label上设置当前时间 QDateTime time = QDateTime:: ...

  8. Qt5.3.2_CentOS6.4(x86)_代码文件编码

    1.1.1.Qt5.3.2_MinGW 在Windows中安装时,默认的文件编码是 UTF8. 1.2.在 CentOS6.4中安装 qt-opensource-linux-x86-5.3.2.run ...

  9. 《WAP团队项目需求分析改进》

    基于原型的团队项目需求调研与分析 本项目是一个家教系统的实现,随着时代的进步,现今已经进入信息技术时代,越来越多的人注意到了教育的重要性.家长对于孩子的学习提高注意力,大家都不想自己的孩子输在起跑线上 ...

  10. Codeforces 847B - Preparing for Merge Sort

    847B - Preparing for Merge Sort 思路:前面的排序的最后一个一定大于后面的排序的最后一个.所以判断要不要开始新的排序只要拿当前值和上一个排序最后一个比较就可以了. 代码: ...