题目链接

题解

20pts

$O(n^3)$枚举$x,y,z$,根据题目要求判断

40pts

$O(n^2)$枚举$x,z$,需要满足$x,z$奇偶相同

20~40pts的代码我都没有写过...就不贴了

70~90pts

尝试对40pts的暴力进行优化

题目对三元组的两个限制我们在40pts的时候已经用来优化过了,还有一个限制是颜色相同

我们可以以颜色为关键字对数组进行排序,对每个数算答案的时候,只需要枚举相同颜色的这一段即可(因为三元组要求有序,所以要从$x+2$开始枚举)

这样的复杂度是$O(n*cnt_{col})$(这里的$cnt_{col}$为出现次数最多的颜色的出现次数)

使用$scanf$将会得到70pts

使用快读或$scanf+O2$将会得到80pts

使用快读+$O2$将会得到90pts

($fread$在这里的效果和快读是差不多的,因为数只有$1e5$个)

#include <bits/stdc++.h>

#define ll long long
#define inf 0x3f3f3f3f
#define il inline namespace io { #define in(a) a=read()
#define out(a) write(a)
#define outn(a) out(a),putchar('\n') #define I_int int
inline I_int read() {
I_int x = , f = ; char c = getchar() ;
while( c < '' || c > '' ) { if( c == '-' ) f = - ; c = getchar() ; }
while( c >= '' && c <= '' ) { x = x * + c - '' ; c = getchar() ; }
return x * f ;
}
char F[ ] ;
inline void write( I_int x ) {
I_int tmp = x > ? x : -x ;
if( x < ) putchar( '-' ) ;
int cnt = ;
while( tmp > ) {
F[ cnt ++ ] = tmp % + '' ;
tmp /= ;
}
while( cnt > ) putchar( F[ -- cnt ] ) ;
}
#undef I_int }
using namespace io ; using namespace std ; #define N 100010
const int mod = ; int n = read() , m = read() ;
struct node {
int col , val , id ;
} a[ N ] ; bool cmp( node a , node b ) {
return a.col < b.col ;
} int main() {
for( int i = ; i <= n ; i ++ ) a[ i ].val = read() , a[ i ].id = i ;
for( int i = ; i <= n ; i ++ ) a[ i ].col = read() ;
sort( a + , a + n + , cmp ) ;
int cur = ;
ll ans = ;
for( int i = ; i <= n ; i ++ ) {
ll sum = ;
for( cur = i + ; a[ i ].col == a[ cur ].col && cur <= n ; cur ++ ) {
if( ( a[ i ].id + a[ cur ].id ) % == )
sum = ( sum + ( 1ll * ( a[ i ].id + a[ cur ].id ) % mod * 1ll * ( a[ i ].val + a[ cur ].val ) % mod ) % mod ) % mod ;
}
ans = ( ans + sum ) % mod ;
}
printf( "%lld\n" , ( ans + mod ) % mod ) ;
return ;
}

100pts

考虑使用数学方法优化以上做法

我们现在有什么条件呢,列举一下

1.$x$和$z$的奇偶性相同且颜色相同

2.求和公式为$(x+z)(num_x+num_z)$

从求和公式入手,把括号拆掉,式子变成$x*num_x+x*num_z+z*num_x+z*num_z$

设$x1,x2,x3$的奇偶性相同且颜色相同(那么他们组成的二元组就等同于符合条件的三元组)

考虑$x1$对答案的贡献:

对于$(x1,x2)$,$x1$的贡献为$x1*num_{x1}+x1*num_{x2}$

对于$(x1,x3)$,$x1$的贡献为$x1*num_{x1}+x1*num_{x3}$

那么$x_1$对答案的贡献就是

$x1*(num_{x2}+num_{x3})+2*x1*num_{x1}$

然后多加入一个数$x4$也可以得到类似的贡献(多代几个也就看出来规律了)

推广到$x_n$结论也是一样的

结论:

设$s=\sum num_{xi}$(这里的$xi$均满足条件1)$cnt=cnt_{col}$,$cnt_{col}$为当前颜色奇偶相同的数的个数

则$xi$对答案的贡献为$xi*(s-num_{xi})+(cnt-1)*xi*num_{xi}$($cnt$要$-1$,因为$xi$不能和自己组成二元组)

所以将$s$和$cnt$统计出来就行了,注意要分奇偶统计

复杂度$O(n)$

#include <bits/stdc++.h>

#define ll long long
#define inf 0x3f3f3f3f
#define il inline
#define int long long namespace io { #define in(a) a=read()
#define out(a) write(a)
#define outn(a) out(a),putchar('\n') #define I_int int
inline I_int read() {
I_int x = , f = ; char c = getchar() ;
while( c < '' || c > '' ) { if( c == '-' ) f = - ; c = getchar() ; }
while( c >= '' && c <= '' ) { x = x * + c - '' ; c = getchar() ; }
return x * f ;
}
char F[ ] ;
inline void write( I_int x ) {
if( x == ) { putchar( '' ) ; return ; }
I_int tmp = x > ? x : -x ;
if( x < ) putchar( '-' ) ;
int cnt = ;
while( tmp > ) {
F[ cnt ++ ] = tmp % + '' ;
tmp /= ;
}
while( cnt > ) putchar( F[ -- cnt ] ) ;
}
#undef I_int }
using namespace io ; using namespace std ; #define N 100010
const int mod = ; int n , m ;
struct node {
int col , val ;
} a[ N ] ;
int cnt[ N ][ ] , sum[ N ][ ] ; signed main() {
n = read() , m = read() ;
for( int i = ; i <= n ; i ++ ) a[ i ].val = read() ;
for( int i = ; i <= n ; i ++ ) a[ i ].col = read() ;
for( int i = ; i <= n ; i ++ ) {
cnt[ a[ i ].col ][ i& ] ++ ;
sum[ a[ i ].col ][ i& ] = ( sum[ a[ i ].col ][ i& ] + a[ i ].val ) % mod ;
}
ll ans = ;
for( int i = ; i <= n ; i ++ ) {
ll num = cnt[ a[ i ].col ][ i& ] , s = sum[ a[ i ].col ][ i& ] ;
ans = ( ans + ( i*(s-a[i].val) + (num-)*a[i].val*i ) % mod ) % mod ;
}
printf( "%lld\n" , ans % mod ) ;
return ;
}

Luogu 2671 求和 NOIP2015T3的更多相关文章

  1. luogu 4427 求和

    bjoi 2018 求和 唯一一道可能切的题一个数组还没开long long就成0分了 题目大意: 一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k次方和,而且每次的k可能是不同的 此处 ...

  2. [洛谷2671]求和<前缀和&模拟>

    题目链接:https://www.luogu.org/problemnew/show/P2671 这是noip2015普及组的第三题,谁说的普及组的题就一定水的不行,这道题就比较有意思的 这道题的暴力 ...

  3. Luogu P1625 求和

    题意 给定两个整数 \(n,m\),求 \[\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=i}^{i+m-1}j} \] \(\texttt{Data R ...

  4. luogu P1630 求和(枚举暴力)

    题意 题解 可以发现当a=10001时, 和1是等价的. 所以这题就水了. #include<iostream> #include<cstring> #include<c ...

  5. [Luogu] 余数求和

    question: $$\sum_{i=1}^{n} k \bmod i$$$$\sum_{i=1}^{n} k - \lfloor \frac{k}{i} \rfloor i$$$$\sum_{i= ...

  6. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  7. BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)

    题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...

  8. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  9. 【Bzoj4555】【Luogu P4091】求和(NTT)

    题面 Bzoj Luogu 题解 先来颓柿子 $$ \sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj! \\ =\sum_{j=0}^n2^jj!\sum_{i=0}^nS(i,j ...

随机推荐

  1. java获取系统当前服务器IP地址

    public String getServiceIp(){ InetAddress address; String myIp; try { address = InetAddress.getLocal ...

  2. php表单身份验证

    1. index.php <form method="post" action="dbtest.php">            姓名:       ...

  3. sql server 备份恢复效率

    sql server 备份恢复效率 如何提高备份的速度呢? 其实这个问题和如何让系统跑的更快是一样的,要想系统跑的更快,无非就是:优化系统,或者就是更好更强大的服务器,特别是更多的cpu.更大的内存. ...

  4. 用laravel dingo api插件库创建api的一些心得笔记

    用laravel创建api是很多大型项目正在使用的方法,一般他们都是用dingo api插件库来开发自己的api.以下是ytkah用dingo api的一些心得,有需要的朋友可以关注一下 1.安装 因 ...

  5. linux命令之复制

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/zkn_CS_DN_2013/article/details/24464547 语法:cp [选项] ...

  6. Jquery-plugins-toastr-消息提示

    toastr是一个基于jQuery简单.漂亮的消息提示插件,使用简单.方便,可以根据设置的超时时间自动消失. 1.使用很简单,首选引入toastr的js.css文件 html <link rel ...

  7. Spark Core(三)Executor上是如何launch task(转载)

    1. 启动任务 在前面一篇博客中(Driver 启动.分配.调度Task)介绍了Driver是如何调动.启动任务的,Driver向Executor发送了LaunchTask的消息,Executor接收 ...

  8. pymongo--Bulk Write Operations

    mongo支持客户端进行批量写操作,其基于单一集合. mongo数据库允许应用程序指定用于批量写操作的可接受的等级. mongo提供方法db.collection.bulkWrite()用于批量插入, ...

  9. uvloop —— 超级快的 Python 异步网络框架

    简短介绍 asyncio是遵循Python标准库的一个异步 I/O框架.在这篇文章里,我将介绍 uvloop: 可以完整替代asyncio事件循环.uvloop是用Cython写的,基于 libuv. ...

  10. [LeetCode] 133. Clone Graph_ Medium tag: BFS, DFS

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...