Max Factor

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 10245    Accepted Submission(s): 3304

Problem Description
To improve the organization of his farm, Farmer John labels each of his N (1 <= N <= 5,000) cows with a distinct serial number in the range 1..20,000. Unfortunately, he is unaware that the cows interpret some serial numbers as better than others. In particular, a cow whose serial number has the highest prime factor enjoys the highest social standing among all the other cows.

(Recall that a prime number is just a number that has no divisors except for 1 and itself. The number 7 is prime while the number 6, being divisible by 2 and 3, is not).

Given a set of N (1 <= N <= 5,000) serial numbers in the range 1..20,000, determine the one that has the largest prime factor.
 

Input
* Line 1: A single integer, N

* Lines 2..N+1: The serial numbers to be tested, one per line
 

Output
* Line 1: The integer with the largest prime factor. If there are more than one, output the one that appears earliest in the input file.
 

Sample Input

436384042
 
Sample Output

38

思路:

忘记了memset()只能初始化0、-1,手贱赋了个1,然后疯狂WA

这里用到了素数筛选法:单击666查看大神详解

代码:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<math.h>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define N 20010
using namespace std;
int vis[N]; void prime(){ //素数筛选
memset(vis,0,sizeof(vis));
vis[0]=1,vis[1]=0; //这里1都算素数
for(int i=2;i<=20000;i++){
if(!vis[i]){
for(int j=i*i;j<=20000;j+=i){
vis[j]=1;
}
}
}
} int main(){
int n,ans,maxp,i,a;
prime();
while(~scanf("%d",&n)){
maxp=0;
ans=0;
while(n--){
scanf("%d",&a);
for(i=a;i>0;i--){
if(!vis[i]){
if((i>maxp) && a%i==0){
maxp=i;
ans=a;
break;
}
}
}
}
printf("%d\n",ans);
}
return 0;
}

Max Factor(素数筛法)题解的更多相关文章

  1. 抓其根本(一)(hdu2710 Max Factor 素数 最大公约数 最小公倍数.....)

    素数判断: 一.根据素数定义,该数除了1和它本身以外不再有其他的因数. 详见代码. int prime() { ; i*i<=n; i++) { ) //不是素数 ; //返回1 } ; //是 ...

  2. HDOJ/HDU 2710 Max Factor(素数快速筛选~)

    Problem Description To improve the organization of his farm, Farmer John labels each of his N (1 < ...

  3. HDU-2710 Max Factor

    看懂: Max Factor Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  4. hdu6069(简单数学+区间素数筛法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 给出 l, r, k.求:(lambda d(i^k))mod998244353,其中 ...

  5. HDU 6069 Counting Divisors(区间素数筛法)

    题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...

  6. NowCoder猜想(素数筛法+位压缩)

    在期末被各科的大作业碾压快要窒息之际,百忙之中抽空上牛客网逛了逛,无意中发现一道好题,NowCoder猜想,题意很明显,就是个简单的素数筛法,但竟然超内存了,我晕(+﹏+)~  明明有 3 万多 k ...

  7. [原]素数筛法【Sieve Of Eratosthenes + Sieve Of Euler】

    拖了有段时间,今天来总结下两个常用的素数筛法: 1.sieve of Eratosthenes[埃氏筛法] 这是最简单朴素的素数筛法了,根据wikipedia,时间复杂度为 ,空间复杂度为O(n). ...

  8. 数学#素数筛法 HDU 4548&POJ 2689

    找素数本来是很简单的问题,但当数据变大时,用朴素思想来找素数想必是会超时的,所以用素数筛法. 素数筛法 打表伪代码(用prime数组保存区间内的所有素数): void isPrime() vis[]数 ...

  9. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

随机推荐

  1. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  2. Android内存泄漏的本质原因、解决办法、操作实例

    今年最后一个迭代终于结束了,把过程中碰到的不熟悉的东西拉出来学习总结一下   内存泄漏的本质是:[一个(巨大的)短生命周期对象的引用被一个长生命周期(异步生命周期)的对象持有]   这个东西分为两个部 ...

  3. win8 metro 自己写摄像头拍照项目

    这个项目不是用的系统自带的CameraCaptureUI.是自己写的摄像头的调用,界面做的不好所以,不放了.可是能够实现拍照功能: 以下是using 程序命名空间: using Windows.Med ...

  4. Ubuntu16.04安裝最新Nvidia驱动

    在安装完Ubuntu之后,可能通过自带驱动无法更新,一直处于无法下载状态,那么就需要通过到Nvidia官网下载驱动,手动安装了 方法/步骤 通过度娘,打开NVIDIA官网,然后在下载驱动那里找到自己的 ...

  5. mysql数据库环境配置中部分问题解决办法

    注:原文地址:https://www.cnblogs.com/hezhuoheng/p/9366630.html 其中最重要的,是三个原则:命令按顺序输入.删除了ini(这个不是原则,是我解决问题的一 ...

  6. recv函数返回值说明

    recv函数 int recv( SOCKET s, char FAR *buf, int len, int flags); 不论是客户还是服务器应用程序都用recv函数从TCP连接的另一端接收数据. ...

  7. 登录使用inode的校园网用到的url

    无需使用inode客户端,直接访问下面的url,然后输入账号密码即可. 第一次访问这个url的时候可能会提示下载inode客户端,再访问一次即可. url1:http://172.20.1.1/por ...

  8. sql 关于存储过程的查询

    --查数据库中所有的存储过程select * from sys.procedures ----------------------查数据库中所有的存储过程select o.name from sysc ...

  9. 我的sublime 插件配置

    一个插件就是一个软件 ,这就是sublime的理念 . 1.Packag control 给sublime配置插件当然少不了Package control ,首先安装 Package control ...

  10. Root :: AOAPC I: Beginning Algorithm Contests (Rujia Liu) Volume 5. Dynamic Programming

    10192 最长公共子序列 http://uva.onlinejudge.org/index.php?option=com_onlinejudge& Itemid=8&page=sho ...