Lintcode: Heapify && Summary: Heap
Given an integer array, heapify it into a min-heap array.
For a heap array A, A[0] is the root of heap, and for each A[i], A[i * 2 + 1] is the left child of A[i] and A[i * 2 + 2] is the right child of A[i].
Example
Given [3,2,1,4,5], return [1,2,3,4,5] or any legal heap array. Challenge
O(n) time complexity Clarification
What is heap? Heap is a data structure, which usually have three methods: push, pop and top. where "push" add a new element the heap, "pop" delete the minimum/maximum element in the heap, "top" return the minimum/maximum element. What is heapify?
Convert an unordered integer array into a heap array. If it is min-heap, for each element A[i], we will get A[i * 2 + 1] >= A[i] and A[i * 2 + 2] >= A[i]. What if there is a lot of solutions?
Return any of them.
Heap的介绍1,介绍2,要注意complete tree和full tree的区别, Heap是complete tree;Heap里面 i 的 children分别是 i*2+1 和 i*2+2,i 的 parent是 (i-1)/2
Heapify的基本思路就是:Given an array of N values, a heap containing those values can be built by simply “sifting” each internal node down to its proper location:
1. start with the last internal node
2. swap the current internal node with its smaller child, if necessary
3. then follow the swapped node down
4. continue until all internal nodes are done
public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
int start = A.length/2;
for (int i=start;i>=0;i--)
shiftDown(i, A);
}
private void shiftDown(int ind, int[] A){
int size = A.length;
int left = ind*2+1;
int right = ind*2+2;
while (left<size || right<size){
int leftVal = (left<size) ? A[left] : Integer.MAX_VALUE;
int rightVal = (right<size) ? A[right] : Integer.MAX_VALUE;
int next = (leftVal<=rightVal) ? left : right;
if (A[ind]<A[next]) break;
else {
swap(A, ind,next);
ind = next;
left = ind*2+1;
right = ind*2+2;
}
}
}
private void swap(int[] A, int x, int y){
int temp = A[x];
A[x] = A[y];
A[y] = temp;
}
}
注意第7行,start之所以从A.length/2开始,是因为要从Internal node开始,除开最后一行。其实可以写成start = (A.length - 1 - 1) / 2, 求最后一个index的parent index的基本做法。
17-18行的技巧,不存在就补齐一个很大的数,因为反正最终是求小的,这样省了很多行分情况讨论
下面给出Heap的 Summary, 转来的:implemented a Heap class that can specify min heap or max heap with insert, delete root and build heap functions.
Time Complexity分析:Binary Heap
Java PriorityQueue (Java Doc) time complexity for 1 operation
O(log n) time for the enqueing and dequeing methods (offer, poll, remove() and add). Note that this remove() is inherited, it's not remove(object). This retrieves and removes the head of this queue.
O(n) for the remove(Object) and contains(Object) methods
O(1) for the retrieval methods (peek, element, and size)
The insertion/poll of n elements should be O(n log n)
Build本来应该O(NlogN), 但是如果用巧妙办法:The optimal method starts by arbitrarily putting the elements on a binary tree, respecting the shape property (the tree could be represented by an array, see below). Then starting from the lowest level and moving upwards, shift the root of each subtree downward as in the deletion algorithm until the heap property is restored. 时间复杂度是 O(N)., 参看上面链接里面build a Heap部分证明
These time complexities seem all worst case (wiki), except for .add(). You are right to question the bounds as the Java Doc also states to the extension of this unbound structure:
The details of the growth policy are not specified
As they state in the Doc as well, the PriorityQueue is based on an array with a specific initial capacity. I would assume that the growth will cost O(n) time, which then would also be the worst case time complexity for .add().
To get a guaranteed O(n log n) time for adding n elements you may state the size of your n elements to omit extension of the container: PriorityQueue(int initialCapacity)
Priority Queue work with Map.Entry
some syntax: everytime you change the Map.Entry, you should take it out and put it into PQ again in order for it to be sorted.
If you just change the value of the undelying Map.Entry, PQ won't sort by itself. Example: https://www.cnblogs.com/EdwardLiu/p/11738048.html
class Heap{
private int[] nodes;
private int size;
private boolean isMaxHeap;
public Heap(int capa, boolean isMax){
nodes = new int[capa];
size = 0;
isMaxHeap = isMax;
}
//Build heap from given array.
public Heap(int[] A, boolean isMax){
nodes = new int[A.length];
size = A.length;
isMaxHeap = isMax;
for (int i=0;i<A.length;i++) nodes[i] = A[i];
int start = A.length/2;
for (int i=start;i>=0;i--)
shiftDown(i);
}
//Assume A and nodes have the same length.
public void getNodesValue(int[] A){
for (int i=0;i<nodes.length;i++) A[i] = nodes[i];
}
public boolean isEmpty(){
if (size==0) return true;
else return false;
}
public int getHeapRootValue(){
//should throw exception when size==0;
return nodes[0];
}
private void swap(int x, int y){
int temp = nodes[x];
nodes[x] = nodes[y];
nodes[y] = temp;
}
public boolean insert(int val){
if (size==nodes.length) return false;
size++;
nodes[size-1]=val;
//check its father iteratively.
int cur = size-1;
int father = (cur-1)/2;
while (father>=0 && ((isMaxHeap && nodes[cur]>nodes[father]) || (!isMaxHeap && nodes[cur]<nodes[father]))){
swap(cur,father);
cur = father;
father = (cur-1)/2;
}
return true;
}
private void shiftDown(int ind){
int left = (ind+1)*2-1;
int right = (ind+1)*2;
while (left<size || right<size){
if (isMaxHeap){
int leftVal = (left<size) ? nodes[left] : Integer.MIN_VALUE;
int rightVal = (right<size) ? nodes[right] : Integer.MIN_VALUE;
int next = (leftVal>=rightVal) ? left : right;
if (nodes[ind]>nodes[next]) break;
else {
swap(ind,next);
ind = next;
left = (ind+1)*2-1;
right = (ind+1)*2;
}
} else {
int leftVal = (left<size) ? nodes[left] : Integer.MAX_VALUE;
int rightVal = (right<size) ? nodes[right] : Integer.MAX_VALUE;
int next = (leftVal<=rightVal) ? left : right;
if (nodes[ind]<nodes[next]) break;
else {
swap(ind,next);
ind = next;
left = (ind+1)*2-1;
right = (ind+1)*2;
}
}
}
}
public int popHeapRoot(){
//should throw exception, when heap is empty.
int rootVal = nodes[0];
swap(0,size-1);
size--;
if (size>0) shiftDown(0);
return rootVal;
}
}
public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
if (A.length==0) return;
Heap minHeap = new Heap(A,false);
minHeap.getNodesValue(A);
}
}
经常有关Heap的问题比如:
k largest(or smallest) elements in an array
Write an efficient program for printing k largest elements in an array. Elements in array can be in any order.
常用的方法肯定有QuickSelect, 用Heap也有两种方法可解:
Method Use Max Heap
1) Build a Max Heap tree in O(n)
2) Use Extract Max k times to get k maximum elements from the Max Heap O(klogn)
这个Max Heap的size是O(N)
Time complexity: O(n + klogn)
推荐方法:
Method Use Min Heap
1) Build a Min Heap MH of the first k elements (arr[0] to arr[k-1]) of the given array. O(k)
2) For each element, after the kth element (arr[k] to arr[n-1]), compare it with root of MH.
a) If the element is greater than the root then make it root and call heapifyfor MH
b) Else ignore it.
// The step 2 is O((n-k)*logk)
3) Finally, MH has k largest elements and root of the MH is the kth largest element.
这个Min Heap的size是O(k)
Time Complexity: O(k + (n-k)Logk) without sorted output.
Lintcode: Heapify && Summary: Heap的更多相关文章
- LintCode "Heapify"
My first try was, using partial sort to figure out numbers layer by layer in the heap.. it only fail ...
- Lintcode: Singleton && Summary: Synchronization and OOD
Singleton is a most widely used design pattern. If a class has and only has one instance at every mo ...
- 算法 Heap sort
// ------------------------------------------------------------------------------------------------- ...
- Python常用数据结构之heapq模块
Python数据结构常用模块:collections.heapq.operator.itertools heapq 堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小 ...
- linux调试工具glibc的演示分析-core dump double free【转】
转自:http://www.cnblogs.com/jiayy/p/3475544.html 偶然中发现,下面的两端代码表现不一样 void main(){ void* p1 = malloc(32) ...
- linux调试工具glibc的演示分析
偶然中发现,下面的两端代码表现不一样 void main(){ void* p1 = malloc(32); free(p1); free(p1); // 这里会报double free ...
- Windbg基本命令应用总结
.cordll -ve -u -l //reload core dlls ------加载下载系统文件符号的URL---------- .sympath SRV*C:\Symbols*http://m ...
- centos安装hadoop(伪分布式)
在本机上装的CentOS 5.5 虚拟机, 软件准备:jdk 1.6 U26 hadoop:hadoop-0.20.203.tar.gz ssh检查配置 [root@localhost ~]# ssh ...
- [算法]打印N个数组的整体最大Top K
题目: 有N个长度不一的数组,所有的数组都是有序的,请从大到小打印这N个数组整体最大的前K个数. 例如: 输入含有N行元素的二维数组代表N个一维数组. 219,405,538,845,971 148, ...
随机推荐
- Android SDK更新8.1.0时报错
Done loading packages.Preparing to install archivesDownloading SDK Platform Android 8.1.0, API 27, r ...
- MongoDB3.4版本配置详解
重要配置参数讲解如下 processManagement: fork: <true | false> 描述:是否以fork模式运行mongod/mongos进程,默认为false. pid ...
- create-react-app项目中的eslint
"no-multi-spaces": 1, //禁止多个空格 "jsx-quotes": 1, //此规则强制在JSX属性中一致使用双引号或单引号 " ...
- LeetCode 24 Swap Nodes in Pairs (交换相邻节点)
题目链接: https://leetcode.com/problems/swap-nodes-in-pairs/?tab=Description Problem: 交换相邻的两个节点 如上 ...
- vue-loader的简单例子
一.模块加载器 1.broserify 模块加载器, 只能加载js 2.webpack 模块加载器, 一切东西都是模块, 最后打包到一块 .vue文件 ==> 需要用webpack编译成浏览器 ...
- 23种设计模式之解释器模式(Interpreter)
解释器模式属于类的行为型模式,描述了如何为语言定义一个文法,如何在该语言中表示一个句子,以及如何解释这些句子,这里的“语言”是使用规定格式和语法的代码.解释器模式主要用在编译器中,在应用系统开发中很少 ...
- Win8安装msi程序出现2502、2503错误解决方法
在Win8中,在安装msi安装包的时候常常会出现代码为2502.2503的错误.其实这种错误是由于安装权限不足造成的,因为这种msi的安装包不像其他exe的安装程序, 在安装包上点击"右键& ...
- mysql补充(2)常用sql语句
补充:MySQL数据库 详解 常用的Mysql数据库操作语句大全 1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码 1.连接到本机上的MYSQL.首先打开DOS窗口,然后 ...
- Unity3D笔记 GUI 二 、实现选项卡一窗口
实现目标: 1.个性化Box控件 2.新建TextAmount样式 3.新建TextItem样式 一.个性化Windows界面 设置GUI Skin 1.2 部分代码 Rect stateBox = ...
- Swift 使用 LLDB 调试命令
swift 和 oc 的语法不一样: Xcode 调试技巧之 Swift 篇 打印和赋值,观察数值变量和view对象属性 p指令可打印其对象类型.内存地址以及该对象的值等具体信息, po指令则是打印其 ...