Lintcode: Heapify && Summary: Heap
Given an integer array, heapify it into a min-heap array.
For a heap array A, A[0] is the root of heap, and for each A[i], A[i * 2 + 1] is the left child of A[i] and A[i * 2 + 2] is the right child of A[i].
Example
Given [3,2,1,4,5], return [1,2,3,4,5] or any legal heap array. Challenge
O(n) time complexity Clarification
What is heap? Heap is a data structure, which usually have three methods: push, pop and top. where "push" add a new element the heap, "pop" delete the minimum/maximum element in the heap, "top" return the minimum/maximum element. What is heapify?
Convert an unordered integer array into a heap array. If it is min-heap, for each element A[i], we will get A[i * 2 + 1] >= A[i] and A[i * 2 + 2] >= A[i]. What if there is a lot of solutions?
Return any of them.
Heap的介绍1,介绍2,要注意complete tree和full tree的区别, Heap是complete tree;Heap里面 i 的 children分别是 i*2+1 和 i*2+2,i 的 parent是 (i-1)/2
Heapify的基本思路就是:Given an array of N values, a heap containing those values can be built by simply “sifting” each internal node down to its proper location:
1. start with the last internal node
2. swap the current internal node with its smaller child, if necessary
3. then follow the swapped node down
4. continue until all internal nodes are done
public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
int start = A.length/2;
for (int i=start;i>=0;i--)
shiftDown(i, A);
}
private void shiftDown(int ind, int[] A){
int size = A.length;
int left = ind*2+1;
int right = ind*2+2;
while (left<size || right<size){
int leftVal = (left<size) ? A[left] : Integer.MAX_VALUE;
int rightVal = (right<size) ? A[right] : Integer.MAX_VALUE;
int next = (leftVal<=rightVal) ? left : right;
if (A[ind]<A[next]) break;
else {
swap(A, ind,next);
ind = next;
left = ind*2+1;
right = ind*2+2;
}
}
}
private void swap(int[] A, int x, int y){
int temp = A[x];
A[x] = A[y];
A[y] = temp;
}
}
注意第7行,start之所以从A.length/2开始,是因为要从Internal node开始,除开最后一行。其实可以写成start = (A.length - 1 - 1) / 2, 求最后一个index的parent index的基本做法。
17-18行的技巧,不存在就补齐一个很大的数,因为反正最终是求小的,这样省了很多行分情况讨论
下面给出Heap的 Summary, 转来的:implemented a Heap class that can specify min heap or max heap with insert, delete root and build heap functions.
Time Complexity分析:Binary Heap
Java PriorityQueue (Java Doc) time complexity for 1 operation
O(log n) time for the enqueing and dequeing methods (offer, poll, remove() and add). Note that this remove() is inherited, it's not remove(object). This retrieves and removes the head of this queue.
O(n) for the remove(Object) and contains(Object) methods
O(1) for the retrieval methods (peek, element, and size)
The insertion/poll of n elements should be O(n log n)
Build本来应该O(NlogN), 但是如果用巧妙办法:The optimal method starts by arbitrarily putting the elements on a binary tree, respecting the shape property (the tree could be represented by an array, see below). Then starting from the lowest level and moving upwards, shift the root of each subtree downward as in the deletion algorithm until the heap property is restored. 时间复杂度是 O(N)., 参看上面链接里面build a Heap部分证明
These time complexities seem all worst case (wiki), except for .add(). You are right to question the bounds as the Java Doc also states to the extension of this unbound structure:
The details of the growth policy are not specified
As they state in the Doc as well, the PriorityQueue is based on an array with a specific initial capacity. I would assume that the growth will cost O(n) time, which then would also be the worst case time complexity for .add().
To get a guaranteed O(n log n) time for adding n elements you may state the size of your n elements to omit extension of the container: PriorityQueue(int initialCapacity)
Priority Queue work with Map.Entry
some syntax: everytime you change the Map.Entry, you should take it out and put it into PQ again in order for it to be sorted.
If you just change the value of the undelying Map.Entry, PQ won't sort by itself. Example: https://www.cnblogs.com/EdwardLiu/p/11738048.html
class Heap{
private int[] nodes;
private int size;
private boolean isMaxHeap;
public Heap(int capa, boolean isMax){
nodes = new int[capa];
size = 0;
isMaxHeap = isMax;
}
//Build heap from given array.
public Heap(int[] A, boolean isMax){
nodes = new int[A.length];
size = A.length;
isMaxHeap = isMax;
for (int i=0;i<A.length;i++) nodes[i] = A[i];
int start = A.length/2;
for (int i=start;i>=0;i--)
shiftDown(i);
}
//Assume A and nodes have the same length.
public void getNodesValue(int[] A){
for (int i=0;i<nodes.length;i++) A[i] = nodes[i];
}
public boolean isEmpty(){
if (size==0) return true;
else return false;
}
public int getHeapRootValue(){
//should throw exception when size==0;
return nodes[0];
}
private void swap(int x, int y){
int temp = nodes[x];
nodes[x] = nodes[y];
nodes[y] = temp;
}
public boolean insert(int val){
if (size==nodes.length) return false;
size++;
nodes[size-1]=val;
//check its father iteratively.
int cur = size-1;
int father = (cur-1)/2;
while (father>=0 && ((isMaxHeap && nodes[cur]>nodes[father]) || (!isMaxHeap && nodes[cur]<nodes[father]))){
swap(cur,father);
cur = father;
father = (cur-1)/2;
}
return true;
}
private void shiftDown(int ind){
int left = (ind+1)*2-1;
int right = (ind+1)*2;
while (left<size || right<size){
if (isMaxHeap){
int leftVal = (left<size) ? nodes[left] : Integer.MIN_VALUE;
int rightVal = (right<size) ? nodes[right] : Integer.MIN_VALUE;
int next = (leftVal>=rightVal) ? left : right;
if (nodes[ind]>nodes[next]) break;
else {
swap(ind,next);
ind = next;
left = (ind+1)*2-1;
right = (ind+1)*2;
}
} else {
int leftVal = (left<size) ? nodes[left] : Integer.MAX_VALUE;
int rightVal = (right<size) ? nodes[right] : Integer.MAX_VALUE;
int next = (leftVal<=rightVal) ? left : right;
if (nodes[ind]<nodes[next]) break;
else {
swap(ind,next);
ind = next;
left = (ind+1)*2-1;
right = (ind+1)*2;
}
}
}
}
public int popHeapRoot(){
//should throw exception, when heap is empty.
int rootVal = nodes[0];
swap(0,size-1);
size--;
if (size>0) shiftDown(0);
return rootVal;
}
}
public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
if (A.length==0) return;
Heap minHeap = new Heap(A,false);
minHeap.getNodesValue(A);
}
}
经常有关Heap的问题比如:
k largest(or smallest) elements in an array
Write an efficient program for printing k largest elements in an array. Elements in array can be in any order.
常用的方法肯定有QuickSelect, 用Heap也有两种方法可解:
Method Use Max Heap
1) Build a Max Heap tree in O(n)
2) Use Extract Max k times to get k maximum elements from the Max Heap O(klogn)
这个Max Heap的size是O(N)
Time complexity: O(n + klogn)
推荐方法:
Method Use Min Heap
1) Build a Min Heap MH of the first k elements (arr[0] to arr[k-1]) of the given array. O(k)
2) For each element, after the kth element (arr[k] to arr[n-1]), compare it with root of MH.
a) If the element is greater than the root then make it root and call heapifyfor MH
b) Else ignore it.
// The step 2 is O((n-k)*logk)
3) Finally, MH has k largest elements and root of the MH is the kth largest element.
这个Min Heap的size是O(k)
Time Complexity: O(k + (n-k)Logk) without sorted output.
Lintcode: Heapify && Summary: Heap的更多相关文章
- LintCode "Heapify"
My first try was, using partial sort to figure out numbers layer by layer in the heap.. it only fail ...
- Lintcode: Singleton && Summary: Synchronization and OOD
Singleton is a most widely used design pattern. If a class has and only has one instance at every mo ...
- 算法 Heap sort
// ------------------------------------------------------------------------------------------------- ...
- Python常用数据结构之heapq模块
Python数据结构常用模块:collections.heapq.operator.itertools heapq 堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小 ...
- linux调试工具glibc的演示分析-core dump double free【转】
转自:http://www.cnblogs.com/jiayy/p/3475544.html 偶然中发现,下面的两端代码表现不一样 void main(){ void* p1 = malloc(32) ...
- linux调试工具glibc的演示分析
偶然中发现,下面的两端代码表现不一样 void main(){ void* p1 = malloc(32); free(p1); free(p1); // 这里会报double free ...
- Windbg基本命令应用总结
.cordll -ve -u -l //reload core dlls ------加载下载系统文件符号的URL---------- .sympath SRV*C:\Symbols*http://m ...
- centos安装hadoop(伪分布式)
在本机上装的CentOS 5.5 虚拟机, 软件准备:jdk 1.6 U26 hadoop:hadoop-0.20.203.tar.gz ssh检查配置 [root@localhost ~]# ssh ...
- [算法]打印N个数组的整体最大Top K
题目: 有N个长度不一的数组,所有的数组都是有序的,请从大到小打印这N个数组整体最大的前K个数. 例如: 输入含有N行元素的二维数组代表N个一维数组. 219,405,538,845,971 148, ...
随机推荐
- 被C语言操作符优先级坑了
今天有一个枚举的题目的代码是这样的: 重点在于maxXor这个函数的实现,枚举两个数字,其中maxr保存了最大值的 i 异或 j , 可是这个程序执行结果大大出乎意外-_-. 然后就把 i 异或 j ...
- linux系统中关于shell变量$*与$@的区别
在我们初学linux系统shell时,可能会感觉$@与$*没什么区别,如下面shell脚本: #!/bin/bash# name:a.sh # echo 'this script $* is: '$* ...
- -bash: locate: command not found
部分版本的linux系统使用locate快速查找某文件路径会报以下错误: -bash: locate: command not found 其原因是没有安装mlocate这个包 安装:yum -y ...
- iOS中self.xxx 和 _xxx 下划线的区别
property (nonatomic,copy) NSString *propertyName; self.propertyName 是对属性的拜访: _propertyName 是对部分变量的拜访 ...
- 上拉刷新和下拉刷新的两种方法(包括使用第三方库MJRefresh)
一.使用苹果原生的方法 1.下拉刷新 2.上拉刷新 (1 首先要新建一个footer得XIB文件,当然同时包括对应的控制器文件,例如在XIB文件中可以如下拖拉对应的控件 (2 然后在代码文件中写一个实 ...
- python类中的self参数和cls参数
1. self表示一个类的实例对象本身.如果用了staticmethod就无视这个self了,就将这个方法当成一个普通的函数使用了. 2. cls表是这个类本身. # 代码为证 class A(obj ...
- bootstrap中点击左边展开
<div id="sideNav" href=""><i class="material-icons dp48 glyphicon- ...
- 【转】C#中的Stream
C# 温故而知新:Stream篇(—) C# 温故而知新:Stream篇(二) C# 温故而知新:Stream篇(三) C# 温故而知新:Stream篇 (四) C# 温故而知新:Stream篇(五) ...
- SVN cleanup 报错,清除svn的工作队列
SVN 提交报错, Team->cleanup还是报错: Can't install '*' from pristine store, because no checksum is record ...
- 蓝桥杯 - 数字排列(今有7对数字) - [两种不同的DFS思路]
今有7对数字:两个1,两个2,两个3,...两个7,把它们排成一行.要求,两个1间有1个其它数字,两个2间有2个其它数字,以此类推,两个7之间有7个其它数字.如下就是一个符合要求的排列: 171264 ...