目录

更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

常见的概率分布模型

一、离散概率分布函数

离散概率分布也称为概率质量函数(probability mass function),离散概率分布的例子有

伯努利分布(Bernoulli distribution)

二项分布(binomial distribution)

泊松分布(Poisson distribution)

几何分布(geometric distribution)等

二、连续概率分布函数

连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数,连续概率分布的例子有

正态分布(normal distribution)

指数分布(exponential distribution)

β分布(beta distribution)等

三、联合分布函数

给定一个随机变量\((X,Y)\),称定义域为整个平面的二元实值函数

\[F(x,y) = P(X\leq{x},Y\leq{y}) \quad -\infty\geq{x,y}\leq\infty
\]

该二元实值函数为随机变量\((X,Y)\)的分布函数,也可以称为是\((X,Y)\)的联合分布函数。

按照联合分布函数的定义,\(F(x,y)=P((X,Y)\in{D_{xy}})\),其中\(D_{xy}\)如下图所示

四、多项分布(Multinomial Distribution)

4.1 多项分布简介

多项分布是二项分布的推广,他们的区别是二项分布的结果只有\(0\)和\(1\)两种,多项式的结果可以有多个值。

多项分布的典型例子是掷骰子,6个点对应6个不同的数,每个点的概率都为\({\frac{1}{6}}\)

与二项分布类似,多项分布来自于\((p_1+p_2+\cdots+p_k)^n多项式的展开\)

4.2 多项分布公式解析

以掷骰子为例,掷骰子的时候掷\(1-6\)的概率都为\({\frac{1}{6}}\),记作\(p_1-p_6\),可以发现\(p_1+p_2+p_3+p_4+p_5+p_6=1\),现在把\(p_1+p_2+p_3+p_4+p_5+p_6\)记作做一次抽样各种事件发生的概率和,即可得\((p_1+p_2+p_3+p_4+p_5+p_6)^n=1^n\)为\(n\)次抽样所有事件相互组合对应的概率和,之后使用多项式展开(注:使用多项式定理展开,由于多项式定理不在本节提及范围内,不多赘述),如果它不是掷骰子,而是一个有\(n\)种可能的问题,会得到一个多项式展开的公式

\[P(X_1 = x_1,\ldots,X_k = x_k) = \begin{cases}
{\frac{n!}{x_1!\cdots{x_k!}}}(p^{x_1}\cdots{p^{x_k})} \quad when\sum_{i=1}^kx_i=n\\
0 \quad otherwise \\
\end{cases}
\]

这个多项式表示\(X_1\)出现\(x_1\)次,\(X_2\)出现\(x_2\)次,\(\ldots\),\(X_k\)出现\(x_k\)次的出现概率,这样就得到了上述所示的多项分布的多项展开式公式。

五、伯努利分布(Bernoulli Distribution)

5.1 伯努利分布简介

伯努利分布是一个二值离散分布,结果只有\(0\)和\(1\)两种。

随即变量\(X\)为\(1\)的概率为\(p\),则为\(0\)的概率为\(q=1-p\),可以用公式表示为

\[f(x) = p^x(1-p)^{1-x} = \begin{cases}
p, \quad\quad x=1 \\
1-p, \quad x=0 \\
\end{cases}
\]

5.2 伯努利分布的期望值和方差

伯努利分布的期望值为

\[\begin{align}
E(X) & = \sum_{i=0}^1x_if(x) \\
& = 1*p+0*(1-p) \\
& = p+0 \\
& = p \\
\end{align}
\]

伯努利分布的方差为

\[\begin{align}
D(x) & = \sum_{i=0}^1(x_i - E(x))^2f(x) \\
& = (1-E(x))^2*p + (0-E(x)^2*(1-p) \\
& = (1-p)^2*p + (0-p)^2*(1-p) \\
& = p - p^2 \\
& = p(1-p) \\
& = pq
\end{align}
\]

六、正态(高斯)分布(Normal(Gaussian) Distribution)

6.1 正态分布的概率密度函数图像

其中红线表示的是标准正态分布图像。

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
%matplotlib inline mu1 = 0
sig1 = 1
mu2 = 0
sig2 = 2 x = np.arange(-5, 5, 0.1)
y1 = stats.norm.pdf(x, mu1, sig1)
y2 = stats.norm.pdf(x, mu2, sig2)
plt.plot(x, y1, 'r-', label='$\mu=0,\sigma^2=1$')
plt.plot(x, y2, 'b-', label='$\mu=0,\sigma^2=2$')
plt.legend()
plt.show()

6.2 正态分布简介

正态分布也称作高斯分布,是最常见的一种分布,其概率密度函数为

\[f(x;\mu,\sigma) = {\frac {1} {\sqrt{2\pi\sigma^2}} } e^{(-{\frac {(x - \mu)^2} {2\sigma^2}})}
\]

如果一个随即变量\(X\)服从该分布,可以写作\(X ~ { N(\mu ,\sigma ^{2})} N(\mu, \sigma^2)\)。

当\(\mu=0,\sigma=1\)时的正态分布称作标准正态分布,这个分布能简化为

\[f(x) = \frac{1}{\sqrt{2\pi}} \, \exp\left(-\frac{x^2}{2} \right)
\]

标准正态分布曲线区间面积计算

\[f(|x-\mu|<\sigma) = 0.6826 \\
f(|x-\mu|<2\sigma) = 0.9544 \\
f(|x-\mu|<3\sigma) = 0.9974 \\
\]

6.3 中心极限定理与正态分布

  1. 中心极限定理1:把许多未知的小作用加起来看作一个变量,这个变量服从正态分布
  2. 中心极限定理2:“大量统计独立的随即变量的和”的分布趋于正态分布

七、泊松分布(Poisson Distribution)

7.1 泊松分布的概率质量函数图像

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
%matplotlib inline lambd = 2.5 x = np.arange(0, 10)
y = stats.poisson.pmf(x, lambd)
plt.plot(x, y, label='$\lambda=2.5$')
plt.legend()
plt.show()

八、二项分布(Binomial Distributio)

8.1 二项分布的概率质量函数图像

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
%matplotlib inline n = 8
p = 0.4 x = np.arange(0, 20)
y = stats.binom.pmf(x, n, p)
plt.plot(x, y, 'o-', label='$n=8,p=0.4$')
plt.legend()
plt.show()

8.2 二项分布简介

二项分布是\(n\)次独立的二值实验(伯努利实验)中成功的次数的离散值概率分布(\(n\)次伯努利实验,一次伯努利实验得到一个伯努利分布)。

随机变量\(X\)服从参数\(n\)和\(p\)的二项分布记作:\(B(n,p)\)。\(n\)次实验中\(k\)次成功的概率质量函数为

\[f(k;n,p) = C_n^kp^k(1-p)^{n-k}
\]

其中\(C_n^k\)是二项式系数:\(C_n^k = {\frac{n!}{k!(n-k)!}}\)

二项分布来源于牛顿二项式

\[(a+b)^n = \sum_{k=0}^nC_n^ka^kb^{n-k}
\]

8.3 二项分布与伯努利分布

  1. 二项分布的期望是伯努利分布期望的\(n\)倍

\[E(x) = np
\]

  1. 二项分布的方差是伯努利分布方差的\(n\)倍

\[D(x) = np(1-p)
\]

九、贝塔分布(Beta Distribution)

9.1 贝塔分布的概率密度函数图像

from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline a = 0.4
b = 0.6 x = np.arange(0.01, 1, 0.01)
y = stats.beta.pdf(x, a, b)
plt.plot(x, y, label='a=0.4,b=0.6')
plt.show()

十、几何分布(负二项分布)(Geometric Distribution)

10.1 几何分布概率质量函数图像

十一、狄利克雷分布(多项分布的共轭分布)(Dirichlet distribution)

十二、超几何分布(Hypergeometric Distribution)

十三、指数分布(Exponential Distribution)

13.1 指数分布概率密度函数图像

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
%matplotlib inline lambd = 0.6 x = np.arange(0, 10, 0.1)
y = lambd * np.exp(-lambd*x)
plt.plot(x, y, label='$\lambda=0.6$')
plt.legend()
plt.show()

B-概率论-常见的概率分布模型的更多相关文章

  1. 【概率论】1-1:概率定义(Definition of Probability)

    title: [概率论]1-1:概率定义(Definition of Probability) categories: Mathematic Probability keywords: Sample ...

  2. BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)

    Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...

  3. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  4. Naive Bayes Algorithm

    朴素贝叶斯的核心基础理论就是贝叶斯理论和条件独立性假设,在文本数据分析中应用比较成功.朴素贝叶斯分类器实现起来非常简单,虽然其性能经常会被支持向量机等技术超越,但有时也能发挥出惊人的效果.所以,在将朴 ...

  5. 概率分布之间的推导关系 | Univariate Distribution Relationships

    Univariate Distribution Relationships APPL: A Probability Programming Language Maplesoft- Software f ...

  6. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  7. 主元分析PCA理论分析及应用

    首先,必须说明的是,这篇文章是完完全全复制百度文库当中的一篇文章.本人之前对PCA比较好奇,在看到这篇文章之后发现其对PCA的描述非常详细,因此迫不及待要跟大家分享一下,希望同样对PCA比较困惑的朋友 ...

  8. 蒙特卡罗算法(Monte Carlo method)

    蒙特卡罗方法概述 蒙特卡罗方法又称统计模拟法.随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.将所求解的问题同一 ...

  9. 贝叶斯A/B测试 - 一种计算两种概率分布差异性的方法过程

    1. 控制变量 0x1:控制变量主要思想 科学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,吧多因素的问题变成多个单因素的问题.每一次只改变其中的某一个因素,而控制其余几个因素不变,从 ...

随机推荐

  1. 【Offer】[34] 【二叉树中和为某一值的路径】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径.从树的根节点开始往下一直到叶节点所经过的节点形成一条路径.  ...

  2. 如何在Centos服务器上搭建起Oracle10、VNC、以及FTP

    一.重装和分区 1.配置所需磁盘阵列(Raid): 2.正确分区: 3.Centos安装:过于简单,请自行bd. 二.连网 系统安装完成之后,我们需为其分配IP和DNS: "编辑连接&quo ...

  3. 类似Flag counter被园子禁用后的备选方案

    背景介绍 2019年9月4日,园子发生严重事故,影响范围为整个园子.随着bug的修复,从个人博客无法访问——>公告栏部分功能禁用——>文件无法上传(多个文章中的图片均加载不出来)——> ...

  4. 40 (OC)* 数据库常见sql语句

    1:增加INSERT INTO t_student (name, age) VALUES ('liwx', 18);2:删除DELETE FROM t_student WHERE name = 'li ...

  5. 02 (OC)* ViewController 的声明周期

    一. UIViewController 的 生命周期 代码 示例 #pragma mark --- life circle // 非storyBoard(xib或非xib)都走这个方法 - (inst ...

  6. 深入理解Three.js中正交摄像机OrthographicCamera

    前言 在深入理解Three.js中透视投影照相机PerspectiveCamera那篇文章中讲解了透视投影摄像机的工作原理以及对应一些参数的解答,那篇文章中也说了会单独讲解Three.js中另一种常用 ...

  7. 品Spring:帝国的基石

    序 生活是一杯酒,有时需要麻醉自己,才能够暂时忘却痛苦与不快.生活是一杯茶,有时需要细细品味,才发现苦涩背后也会有甘甜. Spring是一杯酒,一眼望不到边的官方文档,着实让人难以下咽.Spring是 ...

  8. bug的生命周期

    一  Bug重现环境 这个应该是我们重现bug的一个前提,没有这个前提,可能会无法重现问题,或根本无从下手. 操作系统 这个是一般软件运行的一大前提,基本上所有的软件都依赖于操作系统之上的,对于一个软 ...

  9. java Swing 界面化查询数据库表

    两天从0基础写的.没有按钮对话框功能,只是简单的实现. 当然代码上有很多需要优化的,基本需要重写哈哈哈.但是我怕以后有需要所以还是存一下好了.<把RS结果集,放vector里面,用vector构 ...

  10. hadoop之mapreduce详解(优化篇)

    一.概述 优化前我们需要知道hadoop适合干什么活,适合什么场景,在工作中,我们要知道业务是怎样的,能才结合平台资源达到最有优化.除了这些我们当然还要知道mapreduce的执行过程,比如从文件的读 ...