R:ggplot2数据可视化——进阶(1)
,分为三个部分,此篇为Part1,推荐学习一些基础知识后阅读~
Part 1: Introduction to ggplot2, 覆盖构建简单图表并进行修饰的基础知识
Part 2: Customizing the Look and Feel, 更高级的自定义图形
Part 3: Top 50 Ggplot2 Visualizations - The Master List, 应用Part1、2部分知识创建进阶图形
1 理解ggplot语法
(1)对数据框类型数据进行可视化
(2)可以叠加层来不断丰富图形信息
让我们基于midwest数据集来初始化一个基本的图形:
# Setup
options(scipen=999) # 关闭科学计数表示法 1e+06
library(ggplot2)
data("midwest", package = "ggplot2") # 加载数据
# midwest <- read.csv("http://goo.gl/G1K41K") # alt source # 初始化 Ggplot
ggplot(midwest, aes(x=area, y=poptotal)) # area 和 poptotal 是'midwest'中的列

aes()函数用来专门指定x和y轴,源数据框的任何信息都需要在这个函数中特意指定。
2 线性模型拟合散点图
library(ggplot2)
g <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point() + geom_smooth(method="lm") # set se=FALSE to turnoff confidence bands
plot(g)

?geom_smooth 查询该函数帮助文档
3 调整x y轴范围
#Method 1: By deleting the points outside the range
library(ggplot2)
g <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point() + geom_smooth(method="lm") # set se=FALSE to turnoff confidence bands # Delete the points outside the limits
g + xlim(c(0, 0.1)) + ylim(c(0, 1000000)) # deletes points #Method 2: Zooming In
library(ggplot2)
g <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point() + geom_smooth(method="lm") # set se=FALSE to turnoff confidence bands # Zoom in without deleting the points outside the limits.
# As a result, the line of best fit is the same as the original plot.
g1 <- g + coord_cartesian(xlim=c(0,0.1), ylim=c(0, 1000000)) # zooms in
plot(g1)
4 改变标题
# Full Plot call
library(ggplot2)
ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point() +
geom_smooth(method="lm") +
coord_cartesian(xlim=c(0,0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Population", x="Area", caption="Midwest Demographics") # or g1 + ggtitle("Area Vs Population", subtitle="From midwest dataset") + xlab("Area") + ylab("Population")

5 改变点的颜色和大小
library(ggplot2)
ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(col="steelblue", size=3) + # Set static color and size for points
geom_smooth(method="lm", col="firebrick") + # change the color of line
coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Population", x="Area", caption="Midwest Demographics")

改变颜色以反应另一列变量的类型
library(ggplot2)
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state), size=3) + # Set color to vary based on state categories.
geom_smooth(method="lm", col="firebrick", size=2) +
coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Population", x="Area", caption="Midwest Demographics")
plot(gg)
color, size, shape, stroke (thickness of boundary) and fill (fill color) 均可指定
也可以改变调色板
gg + scale_colour_brewer(palette = "Set1") # change color palette

更多调色板可以在 RColorBrewer 包中找到
library(RColorBrewer)
head(brewer.pal.info, 10) # show 10 palettes
#> maxcolors category colorblind
#> BrBG 11 div TRUE
#> PiYG 11 div TRUE
#> PRGn 11 div TRUE
#> PuOr 11 div TRUE
#> RdBu 11 div TRUE
#> RdGy 11 div FALSE
#> RdYlBu 11 div TRUE
#> RdYlGn 11 div FALSE
#> Spectral 11 div FALSE
#> Accent 8 qual FALSE



6 改变x轴文本和刻度位置
breaks and labels
Step 1: Set the breaks
scale_x_continuous —— X 轴变量是连续变量
scale_x_date ——日期变量
library(ggplot2) # Base plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state), size=3) + # Set color to vary based on state categories.
geom_smooth(method="lm", col="firebrick", size=2) +
coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Population", x="Area", caption="Midwest Demographics") # Change breaks
gg + scale_x_continuous(breaks=seq(0, 0.1, 0.01))

Step 2: Change the labels
改变 labels at the axis ticks. labels 需要和 breaks向量长度保持一致
library(ggplots) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state), size=3) + # Set color to vary based on state categories.
geom_smooth(method="lm", col="firebrick", size=2) +
coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Population", x="Area", caption="Midwest Demographics") # Change breaks + label
gg + scale_x_continuous(breaks=seq(0, 0.1, 0.01), labels = letters[1:11])

# Reverse X Axis Scale
gg + scale_x_reverse()

为轴标签自定义文本
Method 1: Using sprintf(). (Have formatted it as % in below example)
Method 2: Using a custom user defined function. (Formatted 1000’s to 1K scale)
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state), size=3) + # Set color to vary based on state categories.
geom_smooth(method="lm", col="firebrick", size=2) +
coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Population", x="Area", caption="Midwest Demographics") # Change Axis Texts
gg + scale_x_continuous(breaks=seq(0, 0.1, 0.01), labels = sprintf("%1.2f%%", seq(0, 0.1, 0.01))) +
scale_y_continuous(breaks=seq(0, 1000000, 200000), labels = function(x){paste0(x/1000, 'K')})

使用内置主题一次性自定义整个主题
?theme_bw
theme_set() to set the theme before drawing the ggplot. Note that this setting will affect all future plots. *
Draw the ggplot and then add the overall theme setting (eg. theme_bw())
library(ggplot2) # Base plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state), size=3) + # Set color to vary based on state categories.
geom_smooth(method="lm", col="firebrick", size=2) +
coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Population", x="Area", caption="Midwest Demographics") gg <- gg + scale_x_continuous(breaks=seq(0, 0.1, 0.01)) # method 1: Using theme_set()
theme_set(theme_classic()) # not run
gg # method 2: Adding theme Layer itself.
gg + theme_bw() + labs(subtitle="BW Theme")
gg + theme_classic() + labs(subtitle="Classic Theme")


更多主题可以看看 the ggthemes package and the ggthemr package.
参考:
英文教程:http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
R:ggplot2数据可视化——进阶(1)的更多相关文章
- R:ggplot2数据可视化——进阶(3)
Part 3: Top 50 ggplot2 Visualizations - The Master List, 结合进阶1.2内容构建图形 有效的图形是: 不扭曲事实 传递正确的信息 简洁优雅 美观 ...
- R:ggplot2数据可视化——进阶(2)
Part 2: Customizing the Look and Feel, 更高级的自定义化,比如说操作图例.注记.多图布局等 # Setup options(scipen=999) librar ...
- R:ggplot2数据可视化——基础知识
1 安装 # 获取ggplot2 最容易的就是下载整个tidyverse: install.packages("tidyverse") # 也可以选择只下载ggplot2: ins ...
- 最棒的7种R语言数据可视化
最棒的7种R语言数据可视化 随着数据量不断增加,抛开可视化技术讲故事是不可能的.数据可视化是一门将数字转化为有用知识的艺术. R语言编程提供一套建立可视化和展现数据的内置函数和库,让你学习这门艺术.在 ...
- 第一篇:R语言数据可视化概述(基于ggplot2)
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发 ...
- 第三篇:R语言数据可视化之条形图
条形图简介 数据可视化中,最常用的图非条形图莫属,它主要用来展示不同分类(横轴)下某个数值型变量(纵轴)的取值.其中有两点要重点注意: 1. 条形图横轴上的数据是离散而非连续的.比如想展示两商品的价格 ...
- 第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方 ...
- 第五篇:R语言数据可视化之散点图
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制 ...
- 第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先 ...
随机推荐
- go interface衍生的插件化处理
在设计程序的许多应用场景中我们会遇到大体分为三个阶段的任务流. 第一.入口 一个或多个入口,等待阻塞的.或者主动请求方式的. ============================== 比如任务流需 ...
- 实时同步lsyncd
实时同步lsyncd 1 lsyncd 1.1 lsyncd 简介 Lsyncd使用文件系统事件接口(inotify或fsevents)来监视对本地文件和目录的更改.Lsyncd将这些事件整理几秒钟, ...
- 解决:Navicat连接不上MySQL 8.0
转载自 https://www.cnblogs.com/shiysin/p/shiysin.html Navicat连接不上,总是报错1251: 原因是MySQL8.0版本的加密方式和MySQL5.0 ...
- Selenium+Java - 结合sikuliX操作Flash网页
前言 前天被一个Flash的轮播图,给玩坏了,无法操作,后来请教了下crazy总拿到思路,今天实践了下,果然可以了,非常感谢! 模拟场景 打开百度地图 切换城市到北京 使用测距工具 测量 奥林匹克森林 ...
- Spark1——介绍
1.Spark是什么 Spark是一个用来实现快速而通用的集群计算的平台. 2.Spark是一个大一统的软件栈 Spark项目包含多个紧密集成的组件.首先Spark的核心是一个对由很多计算任务组成的. ...
- 一文了解java异常机制
1.异常的概述 1.1什么是异常? 异常:程序在运行过程中发生由于外部问题导致的程序异常事件,发生的异常会中断程序的运行.(在Java等面向对象的编程语言中)异常本身是一个对象,产生异常就是产生了一个 ...
- h5微信分享
h5分享的步骤(前端需要完成的部分) 1.绑定域名 登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”. 2.引入Js文件 在需要调用JS接口的页面引入如下JS文件,(支持ht ...
- 啥?修改下 URL 就能高速下载网盘资源和百度文库?
下载百度资源和百度文库资料是大家常有的需求,不过多数方法都需要下载些软件什么的才能实现. 今天给大家介绍一个简单方法,修改下 URL 就能直接在浏览器中高速下载网盘资源和百度文库资料. [下载百度网盘 ...
- git 常规业务场景 使用
一般每个开发者都会有个自己的分支,有个test分支,合并代码用,两条分支相互备份,就算merge的时候被覆盖,也不用担心 建立自己的分支 // 创建本地分支, git checkout -b dev_ ...
- 一句道破所有的springmvc(面试必备)
springmvc流程 : URL--------前端控制器DispatcherServlet---------HandlerMapping处理器映射器-------调用HandlerAdapter处 ...