codeforces 812 E. Sagheer and Apple Tree(树+尼姆博弈)
题目链接:http://codeforces.com/contest/812/problem/E
题意:有一颗苹果树,这个苹果树所有叶子节点的深度要不全是奇数,要不全是偶数,并且包括根在内的所有节点上都有若干个苹果,现有两个,每个人可以吃掉某个叶子节点上的部分苹果(不能不吃),或者将某个非叶子结点上的部分苹果移向它的孩子(当然也不能不移),吃掉树上最后一个苹果的人获胜。后手可以在游戏开始之前交换任意两个不同的节点的苹果,输出交换后能使得后手胜利的交换总数。
题解:这题挺友善的所有叶子结点的深度奇偶性是一样的,首先考虑到叶子结点是奇数步的,显然不论先手怎么操作,后手总是能吃掉这些苹果比较显然不解释了。然后就是偶数步时,先手操作一次偶数步时显然偶数步就会变成奇数步,也就是说移动的这部分苹果肯定是先手吃到的。于是就转换到了裸的尼姆博弈,什么是尼姆博弈不知道的可以去百度一下。于是这题只要将所有偶数步的节点上的苹果异或一下如果结果是0那么后手胜利否则先手胜利。
然后就是怎么处理交换了,如果ans=0(ans表示异或结果)那么只要在偶数步与奇数步中交换相同的数即可,还有就是偶数步中与奇数步中分别自行交换。
如果ans!=0那么只要遍历一遍偶数步的点找奇数点中苹果数为ans^val[i]的个数即可。
#include <iostream>
#include <string>
#include <cstdio>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
const int M = 1e5 + 10;
map<int , int>num;
vector<int>vc[M];
int ans , val[M] , deep[M] , maxdeep;
void dfs(int u , int pre , int d) {
int len = vc[u].size();
deep[u] = d;
maxdeep = max(maxdeep , d);
for(int i = 0 ; i < len ; i++) {
int v = vc[u][i];
if(v == pre) continue;
dfs(v , u , d + 1);
}
}
int main() {
int n;
scanf("%d" , &n);
num.clear();
for(int i = 0 ; i <= n ; i++) vc[i].clear();
for(int i = 1 ; i <= n ; i++) {
int gg;
scanf("%d" , &gg);
val[i] = gg;
num[gg]++;
}
for(int i = 1 ; i < n ; i++) {
int gg;
scanf("%d" , &gg);
vc[gg].push_back(i + 1);
vc[i + 1].push_back(gg);
}
maxdeep = 0;
dfs(1 , -1 , 1);
for(int i = 1 ; i <= n ; i++) {
if((maxdeep % 2) == (deep[i] % 2)) {
num[val[i]]-- , ans ^= val[i];
}
}//这里处理奇数偶数步用了取巧的方法。就是如果奇偶性和最大深度的奇偶性相同那么就必定是偶数点
ll count = 0;
if(ans == 0) {
ll sum = 0;
for(int i = 1 ; i <= n ; i++) {
if((maxdeep % 2) == (deep[i] % 2)) {
count += num[val[i]];
}
else sum++;
}
count += (sum * (sum - 1) / 2 + (n - sum) * (n - sum - 1) / 2);
}
else {
for(int i = 1 ; i <= n ; i++) {
if((maxdeep % 2) == (deep[i] % 2)) {
count += num[(ans ^ val[i])];
}
}
}
printf("%lld\n" , count);
return 0;
}
codeforces 812 E. Sagheer and Apple Tree(树+尼姆博弈)的更多相关文章
- codeforces 812E Sagheer and Apple Tree(思维、nim博弈)
codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...
- CodeForces 812E Sagheer and Apple Tree 树上nim
Sagheer and Apple Tree 题解: 先分析一下, 如果只看叶子层的话. 那么就相当于 经典的石子问题 nim 博弈了. 那我们看非叶子层. 看叶子层的父亲层. 我们可以发现, 如果从 ...
- POJ 3321 Apple Tree(树状数组)
Apple Tree Time Limit: 2000MS Memory Lim ...
- POJ--3321 Apple Tree(树状数组+dfs(序列))
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22613 Accepted: 6875 Descripti ...
- POJ 3321:Apple Tree 树状数组
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22131 Accepted: 6715 Descr ...
- E - Apple Tree(树状数组+DFS序)
There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...
- Codeforces 812E Sagheer and Apple Tree
大致题意: 给你一颗树,这个树有下列特征:每个节点上有若干个苹果,且从根节点到任意叶子节点的路径长度奇偶性相同. 甲和乙玩(闲)游(得)戏(慌). 游戏过程中,甲乙轮流将任意一个节点的若干个苹果移向它 ...
- Codeforces 812E Sagheer and Apple Tree ——(阶梯博弈)
之前在bc上做过一道类似的阶梯博弈的题目,那题是移动到根,这题是移动到叶子.换汤不换药,只要和终态不同奇偶的那些位置做nim即可.因此这题给出了一个条件:所有叶子深度的奇偶性相同.同时需要注意的是,上 ...
- POJ 3321 Apple Tree 树状数组+DFS
题意:一棵苹果树有n个结点,编号从1到n,根结点永远是1.该树有n-1条树枝,每条树枝连接两个结点.已知苹果只会结在树的结点处,而且每个结点最多只能结1个苹果.初始时每个结点处都有1个苹果.树的主人接 ...
随机推荐
- windows下hexo+github搭建个人博客
网上利用hexo搭建博客的教程非常多,大部分内容都大同小异,选择一篇合适的参考,跟着一步一步来即可. 但是,很多博客由于发布时间较为久远等问题,其中某些操作在现在已不再适用,从而导致类似于我这样的小白 ...
- 在表格中添加text便加框
private void createTableText(Table table) { TableEditor editor = new TableEditor(table); for (int i ...
- 用python实现九九乘法表输出-两种方法
2019-08-05 思考过程:九九乘法表需要两层循环,暂且称之为内循环和外循环,因此需要写双层循环来实现. 循环有for和while两种方式. for循环的实现 for i in range(1,1 ...
- android ——Intent
Intent是android程序中各组件之间进行交互的重要方式,它可以用于指明当前组件想要执行的动作,也可以在不同组件之间传递数据,Intent一般被用于启动活动,启动服务以及发送广播. 一.显式的使 ...
- Python基础总结之初步认识---class类的继承(终)。第十六天开始(新手可相互督促)
最近生病了,python更新要结束了,但是这才是真正的开始.因为后面要更新的是UnitTest单元测试框架,以及后续的Requests库.在后续的笔记会补充一些python的其他细节笔记.我想是这样的 ...
- Spring基础笔记
Spring带给了我们什么便利? 注解版本的IOC如何玩? 组件注册 组件注册的过程中有哪些过滤规则? 如何控制组件的作用域(单例多例)? 六种注册组件的方式? 生命周期 什么是bean的生命周期 在 ...
- 安全测试基础2-sqlmap演练
sqlmap简介 sqlmap是一个开源的渗透测试工具,可以用来进行自动化检测,利用SQL注入漏洞,获取数据库服务器的权限. 它具有功能强大的检测引擎,针对各种不同类型数据库的渗透测试的功能选项,包括 ...
- java并发系列 - 第28天:实战篇,微服务日志的伤痛,一并帮你解决掉
这是java高并发系列第28篇文章. 环境:jdk1.8. 本文内容 日志有什么用? 日志存在的痛点? 构建日志系统 日志有什么用? 系统出现故障的时候,可以通过日志信息快速定位问题,修复bug,恢复 ...
- HBase的高可用(HA)
在公司写文档时候查到的一些资料,感觉对自己很有帮助,现在整理如下: 介绍 HBase是一个高可靠性.高性能.列存储.可伸缩.实时读写的分布式数据库系统,基于列的存储模式适合于存储非结构化数据. 适用场 ...
- Springboot源码分析之jar探秘
摘要: 利用IDEA等工具打包会出现springboot-0.0.1-SNAPSHOT.jar,springboot-0.0.1-SNAPSHOT.jar.original,前面说过它们之间的关系了, ...