题目

给定一个矩阵m, 从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的树子累加起来就是路径和,返回所有的路径中最小的路径和.

解法一

这是一道经典的动态规划题,状态转移方程为dp[i][j] = min{dp[i - 1][j], dp[i][j - 1]} + m[i][j].可以用一个二维的dp矩阵来求解.对于dp矩阵,第一行和第一列只会有一种走法,就是从左到右或者从上到下的累加,所以可以先进行初始化,然后其他元素就可以用过转移方程一个一个填充,知道把整个dp矩阵填充完毕.

解法二

如果用二维数组,对于m行n列的数组,空间复杂度就是O(m*n).动态规划中常用的优化方法之一就是仅使用一个一维数组在进行这个迭代过程.但是这种空间压缩也有局限性,那就是不能记录获得最后结果的路径.如果需要完整路径的话还是需要二维的动态规划表.

代码

#include <iostream>
#include <vector> using namespace std;
//使用二维数组的方式
int minPathSum1(int arr[][], int m, int n) {
if (m == || n == )
return ;
int dp[m][n];
dp[][] = arr[][];
for (int i = ; i < m; i ++)
dp[i][] = dp[i - ][] + arr[i][];
for (int j = ; j < n; j ++)
dp[][j] = dp[][j - ] + arr[][j]; for (int i = ; i < m; i ++) {
for (int j = ; j < n; j ++)
dp[i][j] = min(dp[i - ][j], dp[i][j - ]) + arr[i][j];
} // print array
// for (int i = 0; i < 4; i ++) {
// for (int j = 0; j < 4; j ++)
// cout<<dp[i][j]<<" ";
// cout<<endl;
// } return dp[m - ][n - ];
} //使用一维数组的方式
int minPathSum2(int arr[][], int m, int n) {
if (m == || n == )
return ;
int dp[n];
dp[] = arr[][];
for (int k = ; k < n; k ++)
dp[k] = dp[k - ] + arr[][k]; for (int i = ; i < m; i ++) {
for (int j = ; j < n; j ++) {
if (j == )
dp[j] = dp[j] + arr[i][];
else {
dp[j] = min(dp[j - ], dp[j]) + arr[i][j];
}
}
} //print dp array
// for (int k = 0; k < n; k ++)
// cout<<dp[k]<<" ";
// cout<<endl; return dp[n - ];
} int main()
{
int arr[][] = {{,,,},{,,,},{,,,},{,,,}}; for (int i = ; i < ; i ++) {
for (int j = ; j < ; j ++)
cout<<arr[i][j]<<" ";
cout<<endl;
} cout<<minPathSum2(arr, , )<<endl;
return ;
}
 
 
 
 

[DP]矩阵的最小路径和的更多相关文章

  1. OptimalSolution(1)--递归和动态规划(2)矩阵的最小路径和与换钱的最少货币数问题

    一.矩阵的最小路径和 1 3 5 9 1 4 9 18 1 4 9 18 8 1 3 4 9 9 5 8 12 5 0 6 1 14 14 5 11 12 8 8 4 0 22 22 13 15 12 ...

  2. 1. 线性DP 120. 三角形最小路径和

    经典问题: 120. 三角形最小路径和  https://leetcode-cn.com/problems/triangle/ func minimumTotal(triangle [][]int) ...

  3. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  4. Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖

    题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...

  5. leetcode-64. 最小路径和 · vector + DP

    题面 Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right wh ...

  6. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  7. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  8. 【LeetCode】最小路径和

    [问题]给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [,,], [,,], [, ...

  9. [LeetCode] Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

随机推荐

  1. WPF:Task与事件在下载同步界面中的应用

    //设置一个下载事件类,可传输一个字符串  public class DownloadEventArgs:EventArgs     {         public string id { get; ...

  2. ECharts图表插件(4.x版本)使用(一、关系图force节点显示为自定义图像/图片,带分类选择)

    导读 ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safar ...

  3. Android 9.0 关机流程分析

    极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...

  4. 使用 Docker 生成 Let’s Encrypt 证书

    概念 什么是 Container ? https://www.docker.com/resources/what-container https://www.docker.com/why-docker ...

  5. android ——Tablayout

    Tabs make it easy to explore and switch between different views. 通过TabLayout可以在一个活动中通过滑动或者点击切换到不同的页面 ...

  6. idea(java)实用开发插件

    Idea常用的插件: mybatisX,      ----------------  (Alt + enter) codeGlace, Lombok, sonarlint, translation, ...

  7. Spring自定义属性编辑器及原理解释.md

    bean的自动装配解释 手动解决方式 自动注入解决方式 bean的自动装配解释 之前有构造注入和设值注入,但是也是手动的 autowire ="byname" 这里要注意自动装配的 ...

  8. 6090A一种手指笔

    发明名称--一种手指笔 申请号   CN201821972396.6 申请日   2018.11.28 公开(公告)号   CN209224777U 公开(公告)日   2019.08.09 IPC分 ...

  9. 服务注册发现、配置中心集一体的 Spring Cloud Consul

    前面讲了 Eureka 和 Spring Cloud Config,今天介绍一个全能选手 「Consul」.它是 HashiCorp 公司推出,用于提供服务发现和服务配置的工具.用 go 语言开发,具 ...

  10. Spring入门(十一):Spring AOP使用进阶

    在上篇博客中,我们了解了什么是AOP以及在Spring中如何使用AOP,本篇博客继续深入讲解下AOP的高级用法. 1. 声明带参数的切点 假设我们有一个接口CompactDisc和它的实现类Blank ...