题目

给定一个矩阵m, 从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的树子累加起来就是路径和,返回所有的路径中最小的路径和.

解法一

这是一道经典的动态规划题,状态转移方程为dp[i][j] = min{dp[i - 1][j], dp[i][j - 1]} + m[i][j].可以用一个二维的dp矩阵来求解.对于dp矩阵,第一行和第一列只会有一种走法,就是从左到右或者从上到下的累加,所以可以先进行初始化,然后其他元素就可以用过转移方程一个一个填充,知道把整个dp矩阵填充完毕.

解法二

如果用二维数组,对于m行n列的数组,空间复杂度就是O(m*n).动态规划中常用的优化方法之一就是仅使用一个一维数组在进行这个迭代过程.但是这种空间压缩也有局限性,那就是不能记录获得最后结果的路径.如果需要完整路径的话还是需要二维的动态规划表.

代码

#include <iostream>
#include <vector> using namespace std;
//使用二维数组的方式
int minPathSum1(int arr[][], int m, int n) {
if (m == || n == )
return ;
int dp[m][n];
dp[][] = arr[][];
for (int i = ; i < m; i ++)
dp[i][] = dp[i - ][] + arr[i][];
for (int j = ; j < n; j ++)
dp[][j] = dp[][j - ] + arr[][j]; for (int i = ; i < m; i ++) {
for (int j = ; j < n; j ++)
dp[i][j] = min(dp[i - ][j], dp[i][j - ]) + arr[i][j];
} // print array
// for (int i = 0; i < 4; i ++) {
// for (int j = 0; j < 4; j ++)
// cout<<dp[i][j]<<" ";
// cout<<endl;
// } return dp[m - ][n - ];
} //使用一维数组的方式
int minPathSum2(int arr[][], int m, int n) {
if (m == || n == )
return ;
int dp[n];
dp[] = arr[][];
for (int k = ; k < n; k ++)
dp[k] = dp[k - ] + arr[][k]; for (int i = ; i < m; i ++) {
for (int j = ; j < n; j ++) {
if (j == )
dp[j] = dp[j] + arr[i][];
else {
dp[j] = min(dp[j - ], dp[j]) + arr[i][j];
}
}
} //print dp array
// for (int k = 0; k < n; k ++)
// cout<<dp[k]<<" ";
// cout<<endl; return dp[n - ];
} int main()
{
int arr[][] = {{,,,},{,,,},{,,,},{,,,}}; for (int i = ; i < ; i ++) {
for (int j = ; j < ; j ++)
cout<<arr[i][j]<<" ";
cout<<endl;
} cout<<minPathSum2(arr, , )<<endl;
return ;
}
 
 
 
 

[DP]矩阵的最小路径和的更多相关文章

  1. OptimalSolution(1)--递归和动态规划(2)矩阵的最小路径和与换钱的最少货币数问题

    一.矩阵的最小路径和 1 3 5 9 1 4 9 18 1 4 9 18 8 1 3 4 9 9 5 8 12 5 0 6 1 14 14 5 11 12 8 8 4 0 22 22 13 15 12 ...

  2. 1. 线性DP 120. 三角形最小路径和

    经典问题: 120. 三角形最小路径和  https://leetcode-cn.com/problems/triangle/ func minimumTotal(triangle [][]int) ...

  3. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  4. Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖

    题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...

  5. leetcode-64. 最小路径和 · vector + DP

    题面 Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right wh ...

  6. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  7. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  8. 【LeetCode】最小路径和

    [问题]给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [,,], [,,], [, ...

  9. [LeetCode] Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

随机推荐

  1. JavaScript数据结构——链表的实现与应用

    链表用来存储有序的元素集合,与数组不同,链表中的元素并非保存在连续的存储空间内,每个元素由一个存储元素本身的节点和一个指向下一个元素的指针构成.当要移动或删除元素时,只需要修改相应元素上的指针就可以了 ...

  2. 前端笔记之微信小程序(三)GET请求案例&文件上传和相册API&配置https

    一.信息流小程序-GET请求案例 1.1服务端接口开发 一定要养成接口的意识,前端单打独斗出不来任何效果,必须有接口配合,写一个带有分页.关键词查询的接口: 分页接口:http://127.0.0.1 ...

  3. iOS的录屏功能

    iOS的录屏功能其实没什么好说的,因为网上的教程很多,但是网上的Demo无一例外几乎都有一个bug,那就是iPad上会出现闪退,这也体现了国内的教程文档的一个特点,就是抄袭,教程几乎千篇一律,bug也 ...

  4. 19 个 JavaScript 编码小技巧

    这篇文章适合任何一位基于JavaScript开发的开发者.我写这篇文章主要涉及JavaScript中一些简写的代码,帮助大家更好理解一些JavaScript的基础.希望这些代码能从不同的角度帮助你更好 ...

  5. 在vue-cli 3中, 给stylus、sass样式传入共享的全局变量

    在开发中有时,我们定义了大量的基础样式变量,例如: 大量的vue单文件组件会用到这些变量,每个组件都引人一次又太麻烦.全局引入是个不错的方法,于是,在main.js 中引入variable.styl文 ...

  6. JVM总结(三)

    JVM总结(3)Class文件,类加载机制.编译过程 Java编译器先把Java代码编译为存储字节码的Class文件,再通过Class文件进行类加载. Class类文件的结构 Java编译器可以把Ja ...

  7. MySQL学习随笔记录

    安装选custmer自定义安装.默认安装全部在c盘.自定义安装的时候有个advance port选项用来选择安装目录. -----------------------MySQL常见的一些操作命令--- ...

  8. SpringBoot分布式:Dubbo+zookeeper

    西部开源-秦疆老师:SpringBoot + Dubbo + zookeeper 秦老师交流Q群号: 664386224 未授权禁止转载!编辑不易 , 转发请注明出处!防君子不防小人,共勉! 基础知识 ...

  9. html5 placeholder属性兼容ie11

    placeholder 属性是html5的属性,用于提供描述输入字段预期值的提示信息(hint). 简单例子: <!DOCTYPE HTML> <html> <body& ...

  10. linux 目录大小 文件个数 基于文件大小排列显示

    显示硬盘占用空间du -hlsblk 查看指定目录大小du -sh /opt查看各个目录大小du -h --max-depth=1 当前目录的全部文件个数(包含子文件夹的文件)ls -lR | gre ...