[USACO10FEB]给巧克力Chocolate Giving
题意简叙:
FarmerFarmerFarmer JohnJohnJohn有B头奶牛(1<=B<=25000)(1<=B<=25000)(1<=B<=25000),有N(2∗B<=N<=50000)N(2*B<=N<=50000)N(2∗B<=N<=50000)个农场,编号1−N1-N1−N,有M(N−1<=M<=100000)M(N-1<=M<=100000)M(N−1<=M<=100000)条双向边,第i条边连接农场RiR_iRi和Si(1<=Ri<=N;1<=Si<=N)S_i(1<=R_i<=N;1<=S_i<=N)Si(1<=Ri<=N;1<=Si<=N),该边的长度是Li(1<=Li<=2000)L_i(1<=L_i<=2000)Li(1<=Li<=2000)。居住在农场PiP_iPi的奶牛A(1<=Pi<=N)A(1<=P_i<=N)A(1<=Pi<=N),它想送一份新年礼物给居住在农场Qi(1<=Qi<=N)Q_i(1<=Q_i<=N)Qi(1<=Qi<=N)的奶牛B,但是奶牛A必须先到FJ(居住在编号1的农场)那里取礼物,然后再送给奶牛B。你的任务是:奶牛A至少需要走多远的路程?
题目分析:
不难看出,这就是一道单元最短路的裸题
我们可以首先用dijkstra单源最短路跑出1到所有点之间的最短路径,然后每问一次就调用一次即可,具体见代码。
代码:
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;
#define pa pair<int,int>
#define maxn 100010
priority_queue<pa,vector<pa>,greater<pa> > q;
struct edge
{
int val,to;
};
int n,m,s,dis[maxn];
bool vis[maxn];
vector<edge>e[maxn];
int main()
{
int b;
scanf("%d%d%d",&n,&m,&b);
s=1;
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
edge tmp;
tmp.to=y;
tmp.val=z;
e[x].push_back(tmp);
tmp.to=x;
tmp.val=z;
e[y].push_back(tmp);//注意这里一定要存储双向边
}
//start
for(int i=1;i<=n;i++)
{
dis[i]=2147483647;//初始化
}
dis[s]=0;
q.push(make_pair(0,s));
while(q.empty()==0)
{
int x=q.top().second;
q.pop();
if(vis[x]==1)
continue;
vis[x]=1;
for(int i=0;i<e[x].size();i++)
{
int y=e[x][i].to;
if(dis[x]+e[x][i].val<dis[y])
{
dis[y]=dis[x]+e[x][i].val;
q.push(make_pair(dis[y],y));
}
}
}
//finish
//以上的部分皆为dijkstra标准模板,写的还算比较正规,感谢趣的同志可以收藏一下。(逃
for(int i=1;i<=b;i++)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",dis[x]+dis[y]);//直接调用
}
return 0;
}
[USACO10FEB]给巧克力Chocolate Giving的更多相关文章
- 洛谷 P2984 [USACO10FEB]给巧克力Chocolate Giving
题目描述 Farmer John is distributing chocolates at the barn for Valentine's day, and B (1 <= B <= ...
- 洛谷——P2984 [USACO10FEB]给巧克力Chocolate Giving
https://www.luogu.org/problem/show?pid=2984 题目描述 Farmer John is distributing chocolates at the barn ...
- 【luogu P2984 [USACO10FEB]给巧克力Chocolate Giving】 题解
题目链接:https://www.luogu.org/problemnew/show/P2984 练习SPFA,把FJ当做起点,求出到所有牛的最短路,再把两个牛的相加. #include <cs ...
- P2985 [USACO10FEB]吃巧克力Chocolate Eating
P2985 [USACO10FEB]吃巧克力Chocolate Eating 题目描述 Bessie has received N (1 <= N <= 50,000) chocolate ...
- 洛谷——P2983 [USACO10FEB]购买巧克力Chocolate Buying
P2983 [USACO10FEB]购买巧克力Chocolate Buying 题目描述 Bessie and the herd love chocolate so Farmer John is bu ...
- 洛谷 P2983 [USACO10FEB]购买巧克力Chocolate Buying 题解
P2983 [USACO10FEB]购买巧克力Chocolate Buying 题目描述 Bessie and the herd love chocolate so Farmer John is bu ...
- 洛谷 P2983 [USACO10FEB]购买巧克力Chocolate Buying
购买巧克力Chocolate Buying 乍一看以为是背包,然后交了一个感觉没错的背包上去. #include <iostream> #include <cstdio> #i ...
- P2983 [USACO10FEB]购买巧克力Chocolate Buying
题目描述 Bessie and the herd love chocolate so Farmer John is buying them some. The Bovine Chocolate Sto ...
- 【洛谷】P2983 [USACO10FEB]购买巧克力Chocolate Buying(贪心)
题目描述 Bessie and the herd love chocolate so Farmer John is buying them some. The Bovine Chocolate Sto ...
随机推荐
- 修改Android Studio默认的API Level(SDK版本)
原文:修改Android Studio默认的API Level(SDK版本) Android Studio(2.1.2)新建工程的时候只会让你选择最低支持的SDK版本,默认的目标编译SDK版本会以系统 ...
- easyui tree后台传json处理问题
一.tree json格式 [ { "id": 1, "text": "权限管理", "iconCls": " ...
- Delphi编写系统服务:完成端口演示
在开发大量Socket并发服务器,完成端口加重叠I/O是迄今为止最好的一种解决方案,下面是简单的介绍: “完成端口”模型是迄今为止最为复杂的一种I/O模型,特别适合需要同时管理为数众多的套接字,采 ...
- Oracle数据库密码重置、导入导出库命令
重置办法如下:打开CMD命令提示符,然后输入下面命令进行重置: 输入sqlplus /nolog,回车 SQL> conn /as sysdba 已连接: SQL>alter user s ...
- XPath概述
1. XPath 具体示例可参考网址: http://www.zvon.org/xxl/XPathTutorial/General/examples.html 1.1 概述 * 现节点下所有元素 * ...
- Google Protocol Buffer 的使用和原理(无论对存储还是数据交换,都是个挺有用的东西,有9张图做说明,十分清楚)
感觉Google Protocol Buffer无论对存储还是数据交换,都是个挺有用的东西,这里记录下,以后应该用得着.下文转自: http://www.ibm.com/developerworks/ ...
- Linux ssh及远程连接工具
putty:http://www.so.com/link?url=http%3A%2F%2Fsoftdl.360tpcdn.com%2FPuTTY%2FPuTTY_0.67.zip&q=put ...
- Arcgis Server 10.4.1 搭建集群环境
1.准备工作 Arcgis Server 10.4.1 以及许可一枚 共享存储(通过UNC路径访问,如"\\server1\arcgisserver\") 服务器两台(虚拟机也可 ...
- EasyTransaction主要源码分析
EasyTransaction是一个全功能的分布式事务框架,以下特性摘抄自其首页:https://github.com/QNJR-GROUP/EasyTransaction 一个框架包含多种事务形态, ...
- Android前沿技术
一.热升级Tinker源码解析与手写二.热修复阿里百川Sophix内核原理三.App Instantgoogle8.0 类似热更新技术原理与实战四.强制更新1.银行应用非对称加密对称加密五.组件化框架 ...