vijos P1915 解方程 加强版
背景
B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜.....
为了安慰可怜的B酱, vijos刻意挂出来了真实的题目!
描述
已知多项式方程:
$$a_0+a_1x+a_2x^2+...+a_nx^n=0$$
求这个方程在[1, m]内的整数解(n 和 m 均为正整数)。
输入格式
输入共 n+2 行。
第一行包含 2 个整数 n、m,每两个整数之间用一个空格隔开。
接下来的 n+1 行每行包含一个整数,依次为$a_0,a_1,a_2,...a_n$。
输出格式
第一行输出方程在[1, m]内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m]内的一个整数解。
限制
对于20%的数据,$0<n\leq 100$,$|a_i|<=10^{100}$,$a_n \neq 0$,$m\leq 100$;
对于40%的数据,$0<n\leq 100$,$|a_i|<=10^{10000}$,$a_n \neq 0$,$m\leq 10000$;
对于70%的数据,$0<n\leq 100$,$|a_i|<=10^{10000}$,$a_n \neq 0$,$m\leq 1000000=10^6$;
对于100%的数据,$0<n\leq 100$,$|a_i|<=10^{10000}$,$a_n \neq 0$,$m\leq 100000000=10^8$。
[实际上来说就算m <= 10^10也是可以做的, 不过我把时间限制设定为0.5秒,感觉也差不多了。THU某人: O(m)的算法过不去了, 呜呜呜....]
刚把$noip$的欠账:解方程给补上,又发现了vijos上还有一道加强版。这道题主要就是把$m$的范围加强到了$10^8$,卡掉了$O(m)$的算法。题解戳这里
不过这道题我把解方程$O(m)$的算法稍微优化了一下,然后就这么过去了……
原题$O(m)$的算法主要就是自己设一个模数$p$,先把区间$[0,p)$中的解给算出来,然后方程在$x$处的取值就是方程在$x \bmod p$处的取值,于是可以在$O(pn)$的处理后,用$O(m)$的复杂度得到方程在$[1,m]$中的取值。然而这样其实是有非常多的冗余状态的,因为真正对我们有用的位置只是值为$0$的位置。于是我们可以只处理这些位置,分别存到数组中,最后判断一下某个值是否在每个模数下都出现即可。加了这一点优化后即可获得$AC$。
还有我的这份代码在BZOJ上A不了,需要换一组模数……果然我还是血统不行……
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define N 110
#define maxn 10010
#define maxm 1000010
#define zushu 4 using namespace std;
typedef long long llg; int p[zushu]={7757,11959,15121,20011},nn[N];
int n,m,l[N],mod,st[N],d[zushu][maxm],ld[zushu];
int ans[maxm],la,ci[maxm],nw[zushu];
char s[N][maxn];
bool fu[maxn<<1]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} int suan(int x){
int ans=0,now=1;
for(int i=0;i<=n;i++){
ans+=nn[i]*now%mod,ans%=mod;
now*=x,now%=mod;
}
return ans;
} void work(){
for(int i=1;i<zushu;i++) nw[i]=1;
for(nw[0]=1;nw[0]<=ld[0];nw[0]++){
bool ww=1;
if(d[0][nw[0]]>m) break;
for(int i=1;i<zushu;i++){
while(d[i][nw[i]]<d[0][nw[0]]) nw[i]++;
if(d[i][nw[i]]!=d[0][nw[0]]) ww=0;
if(nw[i]>ld[i]) return;
}
if(ww) ans[++la]=d[0][nw[0]];
}
} int main(){
File("a");
n=getint(); m=getint();
for(int i=0;i<=n;i++){
scanf("%s",s[i]+1),l[i]=strlen(s[i]+1);
st[i]=(s[i][1]=='-'?2:1); fu[i]=(s[i][1]=='-');
}
for(int i=0;i<zushu;i++){
mod=p[i];
for(int j=0;j<=n;j++){
nn[j]=0;
for(int k=st[j];k<=l[j];k++) nn[j]=nn[j]*10+s[j][k]-'0',nn[j]%=mod;
if(fu[j]) nn[j]=-nn[j];
}
for(int j=0;j<mod;j++) if(!suan(j)) d[i][++ld[i]]=j;
for(int j=1;j<=ld[i];j++)
if(d[i][j]+mod<=m) d[i][++ld[i]]=d[i][j]+mod;
else break;
}
work();
printf("%d\n",la);
for(int i=1;i<=la;i++) printf("%d\n",ans[i]);
return 0;
}
后天就是$noip$了,我现在还感觉有各种板子没有复习……感觉药丸……
还有我在想我要不要也开一篇游记什么的……等我复习完了模板再说吧……也许我复习不完了。
vijos P1915 解方程 加强版的更多相关文章
- [NOIP2014] 解方程&加强版 (bzoj3751 & vijos1915)
大概有$O(m)$,$O(n\sqrt{nm})$,$O(n\sqrt{m})$的3个算法,其中后2个可以过加强版.代码是算法3,注意bzoj的数据卡掉了小于20000的质数. #include< ...
- HDU 4793 Collision --解方程
题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...
- codevs3732==洛谷 解方程P2312 解方程
P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...
- 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)
心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...
- 5.5Python数据处理篇之Sympy系列(五)---解方程
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...
- python 解方程
[怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...
随机推荐
- MyBatis的mapper
在前面的学习中,我们还在写一些接口啊,实现类啊,是不是感觉好low的... 其实,我们是可以不用写接口的实现类的,今天就带着大家一起学习一下,当然,我是回顾的. 看下面的结构,是不是没实现类呢! 源码 ...
- Hibernate @OneToMany等注解设置查询过滤条件等
1.如实体PdOrg对象中有users对象,数据库user表有字段DEL_FLAG(0:删除:1:未删除): private List<User> users= new ArrayList ...
- 禁止root用户远程登录
Linux修改ssh端口22 vi /etc/ssh/ssh_config vi /etc/ssh/sshd_config 然后修改为port 8888 以root身份service sshd res ...
- 移动页面div居中效果代码
在线查看效果:http://hovertree.com/texiao/mobile/4.htm 可用手机浏览器查看 以下为HTML文件: <!DOCTYPE html> <html& ...
- 高性能javascript学习笔记系列(5) -快速响应的用户界面和编程实践
参考高性能javascript 理解浏览器UI线程 用于执行javascript和更新用户界面的进程通常被称为浏览器UI线程 UI线程的工作机制可以理解为一个简单的队列系统,队列中的任务按顺序执行 ...
- 奇妙的CSS之布局与定位
前言 关于布局与定位是Web前端开发里非常基础而又重要的部分.介绍相关知识的文章,很容易就可以找到.虽然,这方面的知识点不是很多,但我们如果不弄清楚,在运用时候往往会出现预料之外的布局,这些“意外”有 ...
- jQuery - 全国省市县三级联动
最近有空用jquery做了一个全国省市县的三级联动,在以后或许可以用的到 ,遗憾的是我还没用封装,等有空看能不能封装成一个插件 废话不多说,贴上代码: <!doctype html> &l ...
- SharePoint 2013 文档库中PPT转换PDF
通过使用 PowerPoint Automation Services,可以从 PowerPoint 二进制文件格式 (.ppt) 和 PowerPoint Open XML 文件格式 (.pptx) ...
- iOS之自动调节输入文本框的高度
//自动调节输入文本框的高度 - (void)textViewDidChange:(UITableView *)textView{ float height; if ([[[UIDevice curr ...
- Linux下安装使用Solr
Linux下安装使用Solr 1.首先下载Solr.mmseg4j分词包.tomcat并解压,这用google.百度都可以搜索得到下载地址. 2.因为要使用到中文分词,所以要设置编码,进入tomcat ...