【论文总结】Zero-Shot Semantic Segmentation
论文地址:https://arxiv.org/abs/1906.00817
代码:https://github.com/valeoai/ZS3
一、内容

Step 0:首先使用数据集(完全不包含 Unseen Classes 的图片)训练 DeepLabv3+ 模型,得到的模型可以对只含有 Seen Classes 的图片进行分类,去掉训练好的 DeepLabv3+ 的最后一层分类层,将其变成一个特征提取器。将所有 Classes 输入到 w2c 模型,得到每个Class 对应的向量,将此向量连接到 ground-truth 中每个像素上,即每个像素都有其对应的类的向量。
Step 1:使用数据集(完全不包含 Unseen Classes 的图片)输入到 DeepLabv3+ 模型,得到特征图,根据 ground-truth 上的 Class 筛选出不同类别的特征,将每个类的特征作为 Label,对应类的 w2c 输出的向量作为输入,训练 GMMN 模型。
Step 2:使用完整数据集 (包含 Seen 和 Unseen Classes 的图片)输入到 DeepLabv3+ 模型,如果不包含 Unseen Classes,那么直接拿出特征图去训练最终的分类器,如果包含,则根据图片的 ground-truth 对应的类的向量一一生成特征,将不同类特征组合到一起,再去训练最终的分类器。
二、理解
1. 代码中将 Step 1 和 2 和在了一起,为了便于理解,把 Step 1 和 2 分开解释。
2. Step 2 中使用了两次包含 Unseen Classes 的图像和其 ground-truth。
- 在逐个对类的词向量生成特征时,用到了 ground-truth,根据 ground-truth 知道了类的总数、每个类的位置、以及对应的词向量。
- 在最终训练分类器时,也用到了含有 Unseen Class 的图像的 ground-truth。
- 也可以直接忽略 DeepLab 生成的特征图,直接根据 Seen 和 Unseen 标签随机生成图片,利用类的词向量通过 GMMN 生成特征,结合生成的图片的 Label 去训练最终分类器。
3. w2c 和 GMMN 是文章的关键,w2c 建立了一个从词语到向量的联系,GMMN 建立了一个从词向量到特征图上的视觉特征的联系,比如,使用 Unseen Class 为子弹,Seen Class 中包括弹匣,其他都是些不相干的类,自然子弹和弹匣在词向量中的联系比较起来相对紧密,从而子弹通过 GMMN 生成的特征也更与弹匣类似,通过最终分类器的训练,也就更容易能分辨出子弹。
【论文总结】Zero-Shot Semantic Segmentation的更多相关文章
- 论文笔记《Feedforward semantic segmentation with zoom-out features》
[论文信息] <Feedforward semantic segmentation with zoom-out features> CVPR 2015 superpixel-level,f ...
- 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)
这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...
- Semi-supervised semantic segmentation needs strong, varied perturbations
论文阅读: Semi-supervised semantic segmentation needs strong, varied perturbations 作者声明 版权声明:本文为博主原创文章,遵 ...
- Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...
- 论文笔记(3):STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation
论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题. 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pi ...
- 2018年发表论文阅读:Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation
记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supe ...
- 论文笔记:Rich feature hierarchies for accurate object detection and semantic segmentation
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程 ...
- 论文阅读笔记二十四:Rich feature hierarchies for accurate object detection and semantic segmentation Tech report(R-CNN CVPR2014)
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进 ...
- 论文阅读笔记十七:RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation(CVPR2017)
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-seg ...
随机推荐
- spring-aop(二)学习笔记
常用增强处理类型 增强处理类型 特点 before 前置增强处理,在目标方法前织入增强处理 ...
- antd-vue中的form表单label标签for导致点击文字触发输入框解决方案
<a-form-item :label="label+'图片'" :label-col="{ span: 2 }" :wrapper-col=" ...
- POJ2115C Looooops
http://poj.org/problem?id=2115 k位储存特点,一旦溢出,那么就到第二个循环开始返回0重新计数.问题实际转化成a+cx=b(mod 2^k)跑多少圈能够重合.因为是k位无符 ...
- Discuz!X V3.4后台任意文件删除
Discuz!X V3.4后台任意文件删除 简述 该漏洞为后台任意文件删除,需要有管理员的权限,所以说危害非常小 复现环境 docker.vulhub-master 项目地址:https://gite ...
- Windows蓝牙失效超全攻略
新电脑蓝牙出现问题,我捣鼓了很久,历经九九八十一难得以修复,说一说我在网上看到的各种方法. 一个功能正常使用,需要经过一个又一个的步骤.任何一个地方出问题,都有可能造成蓝牙失效.以下方法按出现概率从大 ...
- Chrome本地跨域请求设置,实现HTML模板页
按照需求,公司现在需要通过第三方的API反馈的数据,进行在本地就可以打开的静态页面程序(完全脱离IIS等服务器).为了更好的维护项目,需要实现静态HTML引入HTML模板,完成ASP.NET模板页的类 ...
- Tomcat-IDEA整合Tomcat服务器
Tomcat(IDEA整合Tomcat服务器) 可以加多个版本tomcat
- Centos配置yum本地源最简单的办法
有关centos配置yum本地源的方法 一.前提 先连接镜像 然后在命令行输入如下命令 mount /dev/sr0 /mnt cd /etc/yum.repos.d/ ls 之后会看到如下的界面 二 ...
- python 小兵(9)生成器
生成器 首先我们来看看什么是个生成器,生成器本质就是迭代器 在python中有三种方式来获取生成器 1.通过生成器函数 2.通过各种推到式来实现生成器 3.通过数据的转换也可以获取生成器 首先,我们先 ...
- django之mysqlclient安装
如果运行环境中没有安装mysqlclient,在迁移数据库时会发生错误 一.在windows下安装: ·如果直接使用 pip install mysqlclient 会提示安装失败(版本不对或者找不到 ...