论文阅读:LIC-Fusion: LiDAR-Inertial-Camera Odometry
本文提出了一种紧耦合的多传感器(雷达-惯导-相机)融合算法,将IMU测量、稀疏视觉特征、提取的激光点融合。提出的算法在时间和空间上对三个异步传感器进行在线校准,补偿校准发生的变化。贡献在于将检测和追踪的激光surf/边特征和观测到的稀疏特征点以及IMU数据用MSCFK框架融合,仅仅采用单线程实现,实现了6自由度的位姿估计。雷达特征包括点和线面,在户外和室内环境都进行了实验,目前最好的VIOL里程计。
LIC-FUSION
A.状态向量
状态向量主要包括\(k\)时刻的IMU状态、IMU和相机之间的外参、IMU和激光雷达之间的外参、滑动窗口中过去\(m\)个相机帧对应的IMU状态、\(n\)个雷达帧对应的IMU状态。分别见公式(1)到(6)。当前时刻IMU状态包括全局坐标系到IMU的位姿四元数、IMU在全局坐标系中的速度、位置,重力和加速度的偏差。外参状态向量包括两个传感器之间的位姿变换。由于传感器延迟、时钟偏移或者数据传输延迟,作者估计了不同传感器与IMU之间的时间偏移(即以IMU为基准),假设存在一个时间偏移量,对其进行纠正,见公式(7)-(8)。参考文献[18]。状态估计值、偏差值、估计值的定义及更新见公式(10),注意旋转不能直接加法。
B.IMU传播
IMU运动学方程见公式(11)-(15)。
C.状态增强
当系统接收到新的一帧图像或者雷达数据,IMU将状态传递到当前时刻,同时也更新窗口中的IMU状态,为了标定不同传感器之间的时间偏移,将估计当前IMU时间,见公式(16),协方差矩阵见公式(17)。雅克比的推导见公式(18)(19)。
D.测量模型
1)雷达特征测量
雷达特征选取曲率比较低或者高的部分,分别对应着边和面。通过使用投影到最近的帧寻找最近的对应特征进行追踪,使用kd-tree快速查找,即将i+1帧的特征点投影到i帧上。而帧间位姿变换可以通过雷达i+1-IMU-Global-IMU-雷达i,具体推导见公式(21)-(23)。追踪完成后,在之前的两帧scan中找到两个边特征,这两个最近的特征应该在相邻的ring上,假设这两个边特征和当前帧的变特征对应物理世界中同一条边,则重投影的误差可以用当前帧的特征线到之前两个线的距离表示,见公式(24)。
对该距离进行线性化,加上高斯白噪声,需要求距离对状态向量的雅克比矩阵,为了实现扩展卡尔曼滤波更新,需要知道距离测量的协方差,由于该距离不是直接测量,因此需要用上文的相关帧上点的协方差进行传递,计算公式见公式(27)。使用基于马氏距离的概率方法将外点去除,见公式。
同理,对于投影的平面surf特征,在其他帧找到三个对应的surf特征,假设是在相同的物理平面上进行采样。测量残差为重投影的特征点和三个对应点形成平面的距离,协方差和马氏距离测试与边特征相似。
2)视觉特征测量
给定一个新的图像,提取FAST特征,使用KLT光流进行追踪,一旦视觉特征丢失或者追踪在滑动窗口之外,使用当前相机位姿进行三角化3D点。已知了3D视觉特征,残差可以用公式(28)和(29)表示,主要就是线性化。这里零空间和在线标定没看懂,二者有什么联系?
E.测量简练
在线性化雷达和视觉特征测量后,可以采用扩展卡尔曼滤波更新,而视觉和雷达的残差可以统一公式,由于测量量太多,采用Givens旋转对测量hessian矩阵进行QR分解后。线性的测量残差可以用标准EKF进行更新。
问题
MSCKF nullspace projection to remove this dependency 啥意思
滑动窗口为什么不维护相机位姿
论文阅读:LIC-Fusion: LiDAR-Inertial-Camera Odometry的更多相关文章
- 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...
- [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...
- 论文阅读LR LIO-SAM
Abstract 紧耦合lidar inertial里程计, 用smoothing和mapping. 1. Introduction 紧耦合lidar-inertial里程计. 紧耦合的lidar i ...
- 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)
白翔的CRNN论文阅读 1. 论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...
- BITED数学建模七日谈之三:怎样进行论文阅读
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...
- 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- Deep Reinforcement Learning for Dialogue Generation 论文阅读
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...
- 论文阅读(Lukas Neumann——【ICCV2017】Deep TextSpotter_An End-to-End Trainable Scene Text Localization and Recognition Framework)
Lukas Neumann——[ICCV2017]Deep TextSpotter_An End-to-End Trainable Scene Text Localization and Recogn ...
- 论文阅读笔记 Word Embeddings A Survey
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...
随机推荐
- PyTorch数据加载处理
PyTorch数据加载处理 PyTorch提供了许多工具来简化和希望数据加载,使代码更具可读性. 1.下载安装包 scikit-image:用于图像的IO和变换 pandas:用于更容易地进行csv解 ...
- CAP 超详细名词解释
目录 引言 概述 分布式 一致性 ACID中的一致性 可用性 分区容错性 可用性与分区容错性,傻傻分不清 问题1:分区容错性说分区故障正常工作,什么叫正常工作?这个正常工作是指满足可用性吗? 问题2: ...
- Python_selenium页面元素整合设计经验
- 【NX二次开发】Block UI 选择节点
属性说明 属性 类型 描述 常规 BlockID String 控件ID Enable Logical 是否可操作 Group ...
- 【C++】fopen与fopen_s
说明: VS2010中使用fopen,是没有问题的.使用VS2015时由于VS的高版本对文件操作的安全性有了较高的要求,所以会出现如下情况: fopen用法: fp = fopen(filename ...
- 【linux】驱动-12-并发与竞态
目录 前言 12. 并发&竞态 12.1 并发&竞态概念 12.2 竞态解决方法 12.3 原子 12.3.1 原子介绍 12.3.2 原子操作步骤 12.3.3 原子 API 12. ...
- 【模板】Noi-Linux 下的一些配置
Noi-Linux 下的一些配置(C++) vim 编程 来自远古的编程神器 针对网上其他博客的配置做了简化 配置 set t_Co=256 //开启256色模式 默认是16色 让你的vim更好看 s ...
- 解决SpringMVC重复提交的问题
方法一:通过重定向采取请求转发的方式完成表单内容的添加会造成内容的重复插入.当向Servlet发送一条增加记录的请求后,servlet首先向数据库增加一条记录,然后又从数据库中查询出所有数据,接着转发 ...
- 磁盘文件监控(Java)并发送邮件通知、系统定期执行的办法
以下是通过xml文件进行的监控路径.文件以及邮件信息的配置,读取xml文件使用的是三方jar包:dom4j 收发邮件采用的是最普通的javamail,需要两个jar包,mail.jar和activit ...
- 如何获取微信小程序for循环的index
在微信小程序开发中,对于wx:for,可以使用wx:for-index="index"来获取数组中的元素的索引值(下标). <view class="item&qu ...