Spark(十二)【SparkSql中数据读取和保存】
一. 读取和保存说明
SparkSQL提供了通用的保存数据和数据加载的方式,还提供了专用的方式
读取:通用和专用
保存
保存有四种模式:
默认: error : 输出目录存在就报错
append: 向输出目录追加
overwrite : 覆盖写
ignore: 忽略,不写
二. 数据格式
1. Parquet
Spark SQL的默认数据源为Parquet格式。Parquet是一种能够有效存储嵌套数据的列式存储格式。
数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需要使用format。修改配置项spark.sql.sources.default,可修改默认数据源格式。
读取
val df = spark.read.load("examples/src/main/resources/users.parquet")
保存
//读取json文件格式
var df = spark.read.json("/opt/module/data/input/people.json")
//保存为parquet格式
df.write.mode("append").save("/opt/module/data/output")
2. Json
Spark SQL 能够自动推测JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载JSON 文件。
注意:Spark读取的JSON文件不是传统的JSON文件,每一行都应该是一个JSON串。
数据格式:employees.json
{"name":"Michael"}
{"name":"Andy", "age":30}
1)导入隐式转换
import spark.implicits._
2)读取Json文件
//专用的读取
val df1: DataFrame = sparkSession.read.json("input/employees.json")
//通用读取
val df: DataFrame = sparkSession.read.format("json").load("input/employees.json")
3)保存为Json文件
//导隐式包,转为DataSet
import sparkSession.implicits.
val ds: Dataset[Emp] = rdd.toDS()
ds.write.mode("overwrite")json("output/emp.json")
3. CSV
CSV: 逗号作为字段分割符的文件
tsv: \t,tab作为字段分割符的文件
读取
// 通用的读取
val df: DataFrame = sparkSession.read.format("csv").load("input/person.csv")
// 专用的读
val df1: DataFrame = sparkSession.read.csv("input/person.csv")
保存
CSV的参数可以到DataFrameReader 609行查看
//DataFrame
df1.write.option("sep",",").mode("overwrite").csv("output/csv")
4. Mysql
读取
val props = new Properties()
/*
JDBC中能写什么参数,参考 JDBCOptions 223行
*/
props.put("user","root")
props.put("password","root")
//库名
val df: DataFrame = sparkSession.read.jdbc("jdbc:mysql://localhost:3306/spark_test", "tbl_user", props)
// 全表查询 只显示前N条
df.show()
//指定查询
df.createTempView("user")
sparkSession.sql("select * from user where id > 5").show()
//通用的读
通用的读
读取mysql的数据
/**
* @description: 测试读取mysql数据
* @author: HaoWu
* @create: 2020年09月11日
*/
object ReadMysqlTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("readMysql")
val spark = SparkSession
.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
val ids = List(1,2,3,4).mkString("'", "','", "'")
val resutl = spark
.read
.format("jdbc")
.option("url", "jdbc:mysql://hadoop102:3306/gmall0421?useSSL=false")
.option("user", "root")
.option("password", "root")
.option("query", s"select * from user_info where id in (${ids})")
.load()
.as[UserInfo] // df -> ds
.rdd
.map(userInfo => (userInfo.id, userInfo))
resutl.collect().foreach(print)
}
}
保存
val list = List(Emp("jack", 2222.22), Emp("jack1", 3222.22), Emp("jack2", 4222.22))
val rdd: RDD[Emp] = sparkSession.sparkContext.makeRDD(list, 1)
//导入隐式包
import sparkSession.implicits._
val ds: Dataset[Emp] = rdd.toDS()
val props = new Properties()
props.put("user","root")
props.put("password","root")
// 表名可以是已经存在的表t1,也可以是一张新表t1(用的多)
//专用的写
ds.write.jdbc("jdbc:mysql://localhost:3306/0508","t1",props)
// 通用的写
ds.write.
option("url","jdbc:mysql://localhost:3306/库名")
//表名
.option("dbtable","t2")
.option("user","root")
.option("password","root")
.mode("append")
.format("jdbc").save()
Spark(十二)【SparkSql中数据读取和保存】的更多相关文章
- Spark学习笔记4:数据读取与保存
Spark对很多种文件格式的读取和保存方式都很简单.Spark会根据文件扩展名选择对应的处理方式. Spark支持的一些常见文件格式如下: 文本文件 使用文件路径作为参数调用SparkContext中 ...
- 【原】Learning Spark (Python版) 学习笔记(二)----键值对、数据读取与保存、共享特性
本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). ...
- Spark学习之数据读取与保存总结(一)
一.动机 我们已经学了很多在 Spark 中对已分发的数据执行的操作.到目前为止,所展示的示例都是从本地集合或者普通文件中进行数据读取和保存的.但有时候,数据量可能大到无法放在一台机器中,这时就需要探 ...
- MyBatis基础入门《十二》删除数据 - @Param参数
MyBatis基础入门<十二>删除数据 - @Param参数 描述: 删除数据,这里使用了@Param这个注解,其实在代码中,不使用这个注解也可以的.只是为了学习这个@Param注解,为此 ...
- (转)SpringMVC学习(十二)——SpringMVC中的拦截器
http://blog.csdn.net/yerenyuan_pku/article/details/72567761 SpringMVC的处理器拦截器类似于Servlet开发中的过滤器Filter, ...
- Spark学习之数据读取与保存(4)
Spark学习之数据读取与保存(4) 1. 文件格式 Spark对很多种文件格式的读取和保存方式都很简单. 如文本文件的非结构化的文件,如JSON的半结构化文件,如SequenceFile结构化文件. ...
- OpenJDK源码研究笔记(十二):JDBC中的元数据,数据库元数据(DatabaseMetaData),参数元数据(ParameterMetaData),结果集元数据(ResultSetMetaDa
元数据最本质.最抽象的定义为:data about data (关于数据的数据).它是一种广泛存在的现象,在许多领域有其具体的定义和应用. JDBC中的元数据,有数据库元数据(DatabaseMeta ...
- Spark基础:(四)Spark 数据读取与保存
1.文件格式 Spark对很多种文件格式的读取和保存方式都很简单. (1)文本文件 读取: 将一个文本文件读取为一个RDD时,输入的每一行都将成为RDD的一个元素. val input=sc.text ...
- FreeSql (十二)更新数据时指定列
var connstr = "Data Source=127.0.0.1;Port=3306;User ID=root;Password=root;" + "Initia ...
随机推荐
- python网站(持续更新)
python官网: https://www.python.org/ python文档:中文 https://docs.python.org/zh-cn/3/ pypi网站: https://pypi. ...
- You (oracle) are not allowed to access to (crontab) because of pam configura
用oracle用户添加备份计划任务,crontab -e,提示:You (oracle) are not allowed to access to (crontab) because of pam c ...
- Python小练习之验证“哥德巴赫猜想”
设计内容:任何一个大于2的偶数都可以分解为两个素数之和,这就是著名的哥达巴赫猜想. 设计要求:要求输入一个大于2的偶数,程序运行后,输出两个素数,其和正好等于该偶数. 1. 实验代码(知道是你们 ...
- vivo 全球商城:商品系统架构设计与实践
一.前言 随着用户量级的快速增长,vivo官方商城v1.0的单体架构逐渐暴露出弊端:模块愈发臃肿.开发效率低下.性能出现瓶颈.系统维护困难. 从2017年开始启动的v2.0架构升级,基于业务模块进行垂 ...
- pip 安装使用 ImportError: No module named setuptools 解决方法
安装过程详见这篇博客: http://www.ttlsa.com/python/how-to-install-and-use-pip-ttlsa/ 安装后运行到:python setup.py ins ...
- Spring Cloud Alibaba 使用Seata解决分布式事务
为什么会产生分布式事务? 随着业务的快速发展,网站系统往往由单体架构逐渐演变为分布式.微服务架构,而对于数据库则由单机数据库架构向分布式数据库架构转变.此时,我们会将一个大的应用系统拆分为多个可以独立 ...
- Sonar规范扫描Java代码暴露的问题
字符串和封装类型应使用 equals()进行比较 例如java.lang.Integer使用引用等于==或!=,因为它不是比较实际值,而是比较内存中的位置. String firstName = ge ...
- 使用grep命令,玩转代码审计寻找Sink
好久没分享东西了,今天分享个实用代码审计技巧 使用grep,玩转代码审计,适用于linux/mac,windows需要另行安装grep: 使用场景如下:快速寻找项目中所有的Sink,快速寻找符合适配条 ...
- 截取oracle字符串中的数字
方法一:如果Oracle版本不是太低的话,使用 正则表达式函数 REGEXP_SUBSTR 处理. REGEXP_SUBSTR有5个参数,分别是: 第一个是输入的字符串 第二个是正则表达式 第三个是标 ...
- Spring Cloud Gateway实战之三:动态路由
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...