人脸识别与特征脸(简单介绍)

什么是特征脸

特征脸(Eigenface)是指用于机器视觉领域中的人脸识别问题的一组特征向量,该方法被认为是第一种有效的人脸识别方法。

PCA的具体实现思想见

【笔记】主成分分析法PCA的原理及计算

(在notebook中)

我们需要加载相应的方法fetch_lfw_people,其为一个人脸识别数据库,加载以后,就可以直接调用了,头一次使用要下载,具体情况见另一篇博客使用sklearn中的fetch_mldata的错误情况以及可能可行的解决方法,其中有说明

  from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people()

我们可以看到其中相应的内容

  faces.keys()

结果为

其中faces.data.shape

结果为

对应的faces.images.shape

结果为(第一个为样本总数,对于每个样本都是62*47的图像)

然后我们随机出36张脸,首先对样本进行一个随机的排列,然后将随机的排列放入X中,然后取出X中前36张脸,然后看一下对应的数据

  random_indexes = np.random.permutation(len(faces.data))
X = faces.data[random_indexes] example_faces = X[:36,:]
example_faces.shape

结果为

绘制函数:

  def plot_faces(faces):

      fig,axes = plt.subplots(6,6,figsize=(10,10),
subplot_kw={'xticks':[],'yticks':[]},
gridspec_kw=dict(hspace=0.1,wspace=0.1))
for i,ax in enumerate(axes.flat):
ax.imshow(faces[i].reshape(62,47),cmap='bone')
plt.show() plot_faces(example_faces)

图像为

可以使用faces.target_names来查看包含的人名

结果为

具体的实现特征脸

这里使用PCA的另一种构建方式svd_solver参数,让其等于randomized,希望使用随机的方式求解PCA(对所有的数据),这样来实例化pca,然后进行fit

  %%time
from sklearn.decomposition import PCA
pca = PCA(svd_solver='randomized')
pca.fit(X)

结果为

使用pca.components_.shape来看一下有多少个维度及主成分

结果为

绘制图像,注意,图像越靠前,越能反映整个样本的总特征

  plot_faces(pca.components_[:36,:])

图像为(这些就被称为特征脸)

因为有很多的图片是一个人一张,而有一些是一个人有很多张,这样出来的数据有的时候是不靠谱的,那么我们就可以获得样本数比较多的人的图片来增加准确度,我们可以

  faces2 = fetch_lfw_people(min_faces_per_person=60)

通过faces2.data.shape,可以发现这样就会少很多

使用len(faces2.target_names)来看一下一共多少人名

结果为

这样faces2中就只有8个人,每个人不少于60张图片,这样的数据库就比较靠谱了

【笔记】特征脸(PCA在人脸识别领域的应用)的更多相关文章

  1. 基于PCA的人脸识别步骤

    代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像.最容易的方式是直接利用欧式距离计算测 ...

  2. 机器学习:PCA(人脸识别中的应用——特征脸)

    一.思维理解 X:原始数据集: Wk:原始数据集 X 的前 K 个主成分: Xk:n 维的原始数据降维到 k 维后的数据集: 将原始数据集降维,就是将数据集中的每一个样本降维:X(i) . WkT = ...

  3. OpenCV人脸识别的原理 .

    OpenCV人脸识别的原理 . 在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, ...

  4. 【计算机视觉】特征脸EigenFace与PCA

    [计算机视觉]特征脸EigenFace与PCA 标签(空格分隔): [图像处理] 版权声明:本文为博主原创文章,转载请注明出处http://blog.csdn.net/lg1259156776/. 说 ...

  5. opencv基于PCA降维算法的人脸识别

    opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...

  6. 使用OpenCV进行人脸识别

    不断维护的地址:http://plzcoding.com/face-recognition-with-opencv/ 怎样使用OpenCV进行人脸识别 本文大部分来自OpenCV官网上的Face Re ...

  7. 机器学习: 特征脸算法 EigenFaces

    人脸识别是机器学习和机器视觉领域非常重要的一个研究方向,而特征脸算法是人脸识别里非常经典的一个算法,EigenFaces 是基于PCA (principal component analysis) 即 ...

  8. opencv人脸识别提取手机相册内人物充当数据集,身份识别学习(草稿)

    未写完 采用C++,opencv+opencv contrib 4.1.0 对手机相册内人物opencv人脸识别,身份识别学习 最近事情多,介绍就先不介绍了 photocut.c #include & ...

  9. opencv学习之路(41)、人脸识别

    一.人脸检测并采集个人图像 //take_photo.cpp #include<opencv2/opencv.hpp> using namespace cv; using namespac ...

随机推荐

  1. 增强采样软件PLUMED的安装与使用

    技术背景 增强采样(Enhanced Sampling)是一种在分子动力学模拟中常用的技术,其作用是帮助我们更加快速的在时间轴上找到尽可能多的体系结构及其对应的能量.比如一个氢气的燃烧反应,在中间过程 ...

  2. Archive for required library:’ WebRoot/WEB-INF/Mytag.tld’in project ‘TagTest’ cannot be read or is not a valid ZIP file

    Description::部署tld文件时报错 我的解决方法: 右击(当前项目)->Build Path->Java Build Path ( Configure Build Path.. ...

  3. 第13次抽考(IO流)

    1.将文本文件a.txt 复制成 b.txt.要求: a. 用逐个字符复制方式: b. 用逐行读写方式: c. 用字符数组方式 2.将压缩包a.rar复制成b.rar. 注意:复制前后手工打开文件,若 ...

  4. CG-CTF WxyVM2

    一.原本以为要动调,因为出现了这个,函数太长,无法反编译 后面才知道这玩意可以在ida的配置文件里面去改,直接改成1024. 里面的MAXFUNSIZE改成1024,就可以反编译了,这个长度是超过这个 ...

  5. Java学习笔记之—Java基础

    将学习到的JAVA基础用xmind记录了下来,需要原件的可以私信

  6. 备战-Java 基础

    备战-Java 基础 仰天大笑出门去,我辈岂是蓬蒿人. 简介:备战-Java 基础. 一.基本数据类型 1.Java基本数据类型 基本数据类型有8种:byte.short.int.long.float ...

  7. python mqtt通信(windows)

      一.消息队列服务器 这里我用到activemq,可到官网下载 http://activemq.apache.org/ 1. 若遇到点击apache-activemq-5.16.2\bin\acti ...

  8. 深入理解Java容器——HashMap

    目录 存储结构 初始化 put resize 树化 get 为什么equals和hashCode要同时重写? 为何HashMap的数组长度一定是2的次幂? 线程安全 参考 存储结构 JDK1.8前是数 ...

  9. 开源的负载测试/压力测试工具 NBomber

    负载测试和压力测试对于确保 web 应用的性能和可缩放性非常重要. 尽管它们的某些测试是相同的,但目标不同. 负载测试:测试应用是否可以在特定情况下处理指定的用户负载,同时仍满足响应目标. 应用在正常 ...

  10. Java基础00-多态19

    1. 多态 多态 1.1 多态概述 代码示例: 动物类: public class Animal { public void eat(){ System.out.println("动物吃东西 ...