1126 Eulerian Path (25 分)

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian

分析:注意定义中的path,一个path一定要覆盖所有的节点,也即图要连通

#include<iostream>
#include<cstdio>
#include<vector>
#include<unordered_map>
#include<string>
#include<set>
#include<algorithm>
#include<cmath>
using namespace std;
const int nmax = 510;
int fath[nmax];
void init(){
for(int i = 0; i < nmax; ++i)fath[i] = i;
}
int findF(int x){
int a = x;
while(x != fath[x])x = fath[x];
while(a != fath[a]){
int temp = fath[a];
fath[a] = x;
a = temp;
}
return x;
}
void Union(int a, int b){
int fa = findF(a), fb = findF(b);
if(fa != fb)fath[fa] = fb;
}
bool isRoot[nmax] = {false};
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("input.txt", "r", stdin);
#endif
init();
int n, m;
scanf("%d%d", &n, &m);
int deg[n + 1] = {0};
for(int i = 0; i < m; ++i){
int u, v;
scanf("%d%d", &u, &v);
deg[u]++;
deg[v]++;
Union(u, v);
}
for(int i = 1; i <= n; ++i)isRoot[findF(i)] = true;
int cnt = 0;
for(int i = 1; i <= n; ++i)if(isRoot[i])cnt++;
int odd = 0;
for(int i = 1; i <= n; ++i){
printf("%d", deg[i]);
if(i < n)printf(" ");
else printf("\n");
if(deg[i] % 2 == 1)odd++;
}
if(cnt == 1){
if(odd == 0)printf("Eulerian\n");
else if(odd == 2)printf("Semi-Eulerian\n");
else printf("Non-Eulerian\n");
}else{
printf("Non-Eulerian\n");
}
return 0;
}

【刷题-PAT】A1126 Eulerian Path (25 分)的更多相关文章

  1. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  2. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  3. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  4. PTA PAT排名汇总(25 分)

    PAT排名汇总(25 分) 计算机程序设计能力考试(Programming Ability Test,简称PAT)旨在通过统一组织的在线考试及自动评测方法客观地评判考生的算法设计与程序设计实现能力,科 ...

  5. 【刷题-PAT】A1114 Family Property (25 分)

    1114 Family Property (25 分) This time, you are supposed to help us collect the data for family-owned ...

  6. 【刷题-PAT】A1101 Quick Sort (25 分)

    1101 Quick Sort (25 分) There is a classical process named partition in the famous quick sort algorit ...

  7. PAT甲级——A1126 Eulerian Path【30】

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. PAT 甲级 1029 Median (25 分)(思维题,找两个队列的中位数,没想到)*

    1029 Median (25 分)   Given an increasing sequence S of N integers, the median is the number at the m ...

  9. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

随机推荐

  1. Nacos——注册中心

    目录 1.什么是nacos 2.使用--依赖+配置文件 3.Nacos服务分级存储模型 4.服务跨集群调用问题 5.服务集群属性--配置服务集群 6. Nacos-NacosRule负载均衡 7.根据 ...

  2. java 图形化小工具Abstract Window Toolit 菜单项

    AWT 中的菜单由如下几个类组合而成 MenuBar: 菜单条,菜单的容器. Menu: 菜单组件,菜单项的容器,它也是Menultem的子类,所以可作为菜单项使用. PopupMenu: 上下文菜单 ...

  3. Sentry 开发者贡献指南 - SDK 开发(性能监控)

    内容整理于官方开发文档 系列 Docker Compose 部署与故障排除详解 K8S + Helm 一键微服务部署 Sentry 开发者贡献指南 - 前端(ReactJS生态) Sentry 开发者 ...

  4. Windows的Nginx服务可视化界面安装

    先安装Nginx服务 启动 Windows安装Nginx服务 参考:https://www.cnblogs.com/pxblog/p/14871932.html 下载软件 https://github ...

  5. JAVA获取当前日期的下周一到下周日的所有日期集合

    /** * 获取当前日期的下周一到下周日的所有日期集合 * @return */ public static List getNextWeekDateList(){ Calendar cal1 = C ...

  6. 【LeetCode】面试题 16.11. 跳水板 Diving Board (Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学 日期 题目地址:https://leetcode ...

  7. 【LeetCode】718. Maximum Length of Repeated Subarray 解题报告(Python)

    [LeetCode]718. Maximum Length of Repeated Subarray 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxu ...

  8. 【剑指Offer】链表中倒数第k个节点 解题报告(Python)

    [剑指Offer]链表中倒数第k个节点 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://www.nowcoder.com/ta/coding-intervie ...

  9. 魔法串(hud4545)

    魔法串 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submiss ...

  10. Spring Boot实战三:集成RabbitMQ,实现消息确认

    Spring Boot集成RabbitMQ相比于Spring集成RabbitMQ简单很多,有兴趣了解Spring集成RabbitMQ的同学可以看我之前的<RabbitMQ学习笔记>系列的博 ...