YbtOJ#903-染色方案【拉格朗日插值,NTT,分治】
正题
题目链接:https://www.ybtoj.com.cn/contest/115/problem/3
题目大意
两个长度为\(n+1\)的序列\(a,b\)
\(a_i\)表示涂了\(i\)个格子的可以获得的价值。
\(b_i\)表示恰好用\(i\)种颜色图最多\(n\)个格子可以获得的总价值。
给出序列\(b\),求序列\(a\)
\(n\in[1,10^5]\),所有运算在\(\% 998244353\)意义下。
解题思路
定义\(c_i\)表示用\(i\)种颜色(不需要都用)时的价值和
那么有
\]
\]
然后\(NTT\)求出来。
之后就有
\]
那么\(c_i\)可以视为一个多项式在\(x=i\)处的值,然后\(a_i\)表示该多项式的第\(i\)项系数。
之后要用拉格朗日插值求出这个多项式\(A\)(考场上不会写了个高消草)
\]
提出常数来,令\(c_i=c_i\times \prod_{j!=i}\frac{1}{x_i-x_j}\)(预处理一个阶乘逆元可以\(O(1)\)求)
再定义多项式\(M(x)=\prod_{i=1}^n(x-x_i)\)
\]
但是还是不可以暴力求,但是我们可以分治求。
\]
那么有
\]
\]
都分治下去\(NTT\)做就好了,注意一下动态分配空间就好了。
时间复杂度\(O(n\log^2 n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=4e5+10,P=998244353;
struct Poly{
ll a[N],n;
}A[40],M[40],F,G;
ll n,fac[N],inv[N],c[N],r[N];
ll x[N],y[N],tmp1[N],tmp2[N];
bool v[40];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=p>>1,tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=f[i+len]*buf%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
ll mul(Poly &F,Poly &G,ll *f){
for(ll i=0;i<=F.n;i++)x[i]=F.a[i];
for(ll i=0;i<=G.n;i++)y[i]=G.a[i];
ll l=1;while(l<=F.n+G.n+2)l<<=1;
for(ll i=F.n+1;i<l;i++)x[i]=0;
for(ll i=G.n+1;i<l;i++)y[i]=0;
for(ll i=0;i<l;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(l>>1):0);
NTT(x,l,1);NTT(y,l,1);
for(ll i=0;i<l;i++)f[i]=x[i]*y[i]%P;
NTT(f,l,-1);return F.n+G.n;
}
ll find_q(){
for(ll i=0;i<40;i++)
if(!v[i]){v[i]=1;return i;}
}
ll solve(ll l,ll r){
ll p=find_q();
if(l==r){
A[p].a[0]=c[l];A[p].n=0;
M[p].a[1]=1;M[p].a[0]=P-l;M[p].n=1;
return p;
}
ll mid=(l+r)>>1;
ll ls=solve(l,mid),rs=solve(mid+1,r);
ll len=mul(A[ls],M[rs],tmp1);mul(A[rs],M[ls],tmp2);
M[p].n=mul(M[ls],M[rs],M[p].a);A[p].n=len;
for(ll i=0;i<=len;i++)A[p].a[i]=(tmp1[i]+tmp2[i])%P;
v[ls]=v[rs]=0;return p;
}
signed main()
{
// freopen("color.in","r",stdin);
// freopen("color.out","w",stdout);
scanf("%lld",&n);F.n=G.n=n;
fac[0]=inv[0]=fac[1]=inv[1]=1;
for(ll i=2;i<=n;i++)
fac[i]=fac[i-1]*i%P,inv[i]=power(fac[i],P-2);
for(ll i=0;i<=n;i++){
scanf("%lld",&F.a[i]);
F.a[i]=F.a[i]*inv[i]%P;
G.a[i]=inv[i]%P;
}
mul(F,G,c);
for(ll i=0;i<=n;i++){
c[i]=c[i]*fac[i]%P;
c[i]=c[i]*inv[i]%P*inv[n-i]%P;
if((n-i)&1)c[i]=P-c[i];
}
ll p=solve(0,n);
for(ll i=0;i<=n;i++)
printf("%lld ",A[p].a[i]);
return 0;
}
YbtOJ#903-染色方案【拉格朗日插值,NTT,分治】的更多相关文章
- LOJ166 拉格朗日插值 2【卷积,NTT】
题目链接:LOJ 题目描述:输入多项式的次数$n$,一个整数$m$和$f(0),f(1),f(2),\ldots,f(n)$,输出$f(m),f(m+1),f(m+2),\ldots,f(m+n)$ ...
- luogu P5667 拉格朗日插值2 拉格朗日插值 多项式多点求值 NTT
LINK:P5667 拉格朗日插值2 给出了n个连续的取值的自变量的点值 求 f(m+1),f(m+2),...f(m+n). 如果我们直接把f这个函数给插值出来就变成了了多项式多点求值 这个难度好像 ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
- LG4781 【模板】拉格朗日插值
题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格 ...
- 【BZOJ4559】成绩比较(动态规划,拉格朗日插值)
[BZOJ4559]成绩比较(动态规划,拉格朗日插值) 题面 BZOJ 洛谷 题解 显然可以每门课顺次考虑, 设\(f[i][j]\)表示前\(i\)门课程\(zsy\)恰好碾压了\(j\)个\(yy ...
- BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...
- 51nod 1362 搬箱子——[ 推式子+组合数计算方法 ] [ 拉格朗日插值 ]
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1362 方法一: 设 a 是向下走的步数. b 是向右下走的步数. c 是向下走 ...
- uoj#448. 【集训队作业2018】人类的本质(Min_25筛+拉格朗日插值)
题面 传送门 题解 肝了整整一天--膜拜yww和cx巨巨--(虽然它们的题解里我就没看懂几个字) 请备好草稿纸和笔,这种题目就是需要耐心推倒 题目所求是这么一个东西 \[ \begin{aligned ...
随机推荐
- 【springboot】集成swagger
1.简介 本章介绍 SpringBoot2.1.9 集成 Swagger2 生成在线的API接口文档. 2. pom依赖: 通过对比了swagger的几个版本,发现还是2.6.1问题最少 <!- ...
- 【权限管理】Apache Shiro和Spring Security的对比
一.Shiro简介 Apache Shiro是Java的一个安全框架.目前,使用Apache Shiro的人越来越多,因为它相当简单,对比Spring Security,可能没有Spring Secu ...
- 后端开发应该掌握的Redis基础
转自:https://juejin.im/post/5d078cd6f265da1b8466e62c 在上一篇文章中,我们简单地讲了一下Redis的应用场景.安装.如何连接等比较基础的知识,那么在这篇 ...
- win10 安装mysql5.7 【自定义安装路径】
- mzy git学习,git协同开发忽略文档配置以及一些杂点(九)
回忆一个电脑多账户问题 之前也说了,如果使用ssh登陆的话,一个电脑就只能登陆一个账号了,不像通过凭据可以切换(但是其实也可以每次去生成新的公钥和私钥,只要你不嫌麻烦) 再次补充: ssh-keyge ...
- 并发编程之:JMM
并发编程之:JMM 大家好,我是小黑,一个在互联网苟且偷生的农民工. 上一期给大家分享了关于Java中线程相关的一些基础知识.在关于线程终止的例子中,第一个方法讲到要想终止一个线程,可以使用标志位的方 ...
- MongoDB学习笔记二- Mongoose
MongoDB学习笔记二 Mongoose Mongoose 简介 之前我们都是通过shell来完成对数据库的各种操作, 在开发中大部分时候我们都需要通过程序来完成对数据库的操作 而Mongoose就 ...
- 【JavasScript】折腾一个基础到不能再基础的顺滑抽奖页面
前言 事情是这样的,作为一个意志力极低的人,最近一直在找寻提高意志力的方法. 然后决定试一试所谓的"建立奖励机制",也就是说,完成一项意志力挑战后给自己一些奖励(具体操作方法不在这 ...
- vue-cli3.x中的webpack配置,优化及多页面应用开发
官方文档 vue-cli3以下版本中,关于webpack的一些配置都在config目录文件中,可是vue-cli3以上版本中,没有了config目录,那该怎么配置webpack呢? 3.x初始化项目后 ...
- Nginx对代理HTTP资源的限制访问
为了限制连接的数量,首先,使用指令来定义密钥并设置共享内存区域的参数(工作进程将使用该区域来共享键值的计数器).作为第一个参数,指定作为关键字计算的表达式.在第二个参数区域中,指定区域的名称及其大小. ...