正题

题目链接:https://www.luogu.com.cn/problem/P4345


题目大意

\(T\)组询问,给出\(n,k\)求

\[\sum_{i=0}^{k}\binom{n}{i}
\]

对\(2333\)取模的值

\(1\leq T\leq 10^5,1\leq k\leq n\leq 10^{18}\)


解题思路

因为模数很小,可以考虑用\(Lucas\)定理,然后考虑怎么优化复杂度。

对于给出的\(n,k\)分成两个部分,第一部分是由\(k\)前面若干段长度为\(P\)的整段构成,这一部分的答案我们发现对于\(C_{\lfloor\frac{n}{P}\rfloor}^{\lfloor\frac{m}{P}\rfloor}\times C^{n\%p}_{m\% p}\)这两个值,后面那一个值的和是确定的,是\(\sum_{i=1}^kC_{n\%p}^k\),前面那一部分的值我们可以递归下去计算。

然后第二部分是剩下的散段,这个部分我们也是自直接递归下去算就可以了

时间复杂度\(O(T\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=2333;
ll n,k,t,S[P][P],C[P][P];
ll Lucas(ll n,ll k){
if(!k)return 1ll;
if(!C[n%P][k%P])return 0;
return Lucas(n/P,k/P)*C[n%P][k%P]%P;
}
ll solve(ll n,ll k){
if(k<0)return 0;
if(n<P)return S[n][min(n,k)];
ll tmp=solve(n/P,k/P-1)*S[n%P][n%P]%P;
tmp=(tmp+solve(n%P,k%P)*Lucas(n/P,k/P)%P)%P;
return tmp;
}
signed main()
{
C[0][0]=S[0][0]=1;
for(ll i=1;i<P;i++)
for(ll j=0;j<=i;j++)
C[i][j]=((j?C[i-1][j-1]:0)+C[i-1][j])%P;
for(ll i=1;i<P;i++){
S[i][0]=C[i][0];
for(ll j=1;j<=i;j++)
(S[i][j]=S[i][j-1]+C[i][j])%=P;
}
scanf("%lld",&t);
while(t--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",solve(n,k));
}
return 0;
}

P4345-[SHOI2015]超能粒子炮·改【Lucas定理,类欧】的更多相关文章

  1. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  2. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  3. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  4. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  5. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  6. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  7. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  8. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  9. loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解

    好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...

  10. P4345 [SHOI2015]超能粒子炮·改

    传送门 看到数据和模数大小就知道要上 lucas 了 然后开始愉快地推公式: 答案为 $\sum _{i=0}^kC_{n}^{i}\ (mod\ 2333)$ 设 $f [ i ] [ j ] = ...

随机推荐

  1. 通用Mapper学习

    <通用Mapper>部分注解    @Table(name="tableName")用法: 这个注解写在实体类的上面 指定数据库表的名字作用: 建立实体类和数据库表之间 ...

  2. bootStrap模态框与select2合用时input不能获取焦点、模态框内部滑动,select选中跳转

    bootStrap模态框与select2合用时input不能获取焦点 在bootstrap的模态框里使用select2插件,会导致select2里的input输入框没有办法获得焦点,没有办法输入. 把 ...

  3. unity优化 — 纹理(优化)通道分离

    unity针对Android平台还提供了通道分离的方式:将图片(sprite)压缩成ETC1,提取Alpha生成一张通道图.unity将通道图保存的格式为a8格式,目的为了让混合起来的Alpha效果很 ...

  4. Maven无法导入插件,pom文件报错

    最近在使用IDEA导入开源项目bootshiro,更新依赖的时候,发现有些插件无法导入,以致于pom文件一直报找不到该插件的错误 一开始就网上各种百度,无论怎么更换阿里云的镜像都导不进,最后想着试试自 ...

  5. git所遇到的问题

    出现这种情况,或 ERROR: Repository not found. fatal: 无法读取远程仓库. 解决办法如下: 1.先输入$ git remote rm origin(删除关联的orig ...

  6. 【Azure 应用服务】App Service For Windows 环境中部署Python站点后,如何继续访问静态资源文件呢(Serving Static Files)?

    问题描述 当创建一个App Service 后,运行时环境和版本选择Windows 和 Python 3.6. 登录Kudu 站点查看,默认的文件有 web.config, hostingstart- ...

  7. opengl中标准矩形像素点手动网格化为三角形条带的实现

    这里以一张矩形图片为例进行说明: 一张图片的像素点是孤立的,导入opengl中进行绘制出来,看起来没问题,但是当我们放大图片时候,显示的就是一个个孤立的点,而没有像看图软件放大图片那样看起来还是连续的 ...

  8. Docker(34)- 如何修改 docker 容器的目录映射

    如果你还想从头学起 Docker,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1870863.html 问题背景 docker run ...

  9. Linu常用日志分析实战

    日志结构分析 分析日志状态码所在位置为第九个 遍历取出第一行日志的每个字段 //取出第一行日志 awk 'NR==1{for(i=1;i<=NF;i++)print i"= " ...

  10. JS013. 重写toFixed( )方法,toFixed()原理 - 四舍五入?银行家舍入法?No!六舍七允许四舍五入√!

    以下为场景实测与原理分析,需要重写函数请直接滚动至页尾!!! 语法 - Number.prototype.toFixed( ) // toFixed()方法 使用定点表示法来格式化一个数值. numO ...