Spring Boot集成sharding-jdbc实现分库分表
一、水平分割
1、水平分库
1)、概念:
以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。
2)、结果
每个库的结构都一样;数据都不一样;
所有库的并集是全量数据;
2、水平分表
1)、概念
以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。
2)、结果
每个表的结构都一样;数据都不一样;
所有表的并集是全量数据;
二、Shard-jdbc 中间件
1、架构图

2、特点
1)、Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。
2)、适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。
3)、可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。
4)、以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。
5)、分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。
6)、SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。
三、项目演示

核心代码块
数据源配置文件
spring:
datasource:
# 数据源:shard_one
dataOne:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_two
dataTwo:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_three
dataThree:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
数据库分库策略
/**
* 数据库映射计算
*/
public class DataSourceAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分库算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "ds_" + ((hash % 2) + 2) ;
}
}
数据表1分表策略
/**
* 分表算法
*/
public class TableOneAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_one_" + (hash % 5+1);
}
}
数据表2分表策略
/**
* 分表算法
*/
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_two_" + (hash % 5+1);
}
}
数据源集成配置
/**
* 数据库分库分表配置
*/
@Configuration
public class ShardJdbcConfig {
// 省略了 druid 配置,源码中有
/**
* Shard-JDBC 分库配置
*/
@Bean
public DataSource dataSource (@Autowired DruidDataSource dataOneSource,
@Autowired DruidDataSource dataTwoSource,
@Autowired DruidDataSource dataThreeSource) throws Exception {
ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();
shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());
shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());
shardJdbcConfig.setDefaultDataSourceName("ds_0");
Map<String,DataSource> dataMap = new LinkedHashMap<>() ;
dataMap.put("ds_0",dataOneSource) ;
dataMap.put("ds_2",dataTwoSource) ;
dataMap.put("ds_3",dataThreeSource) ;
Properties prop = new Properties();
return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);
}
/**
* Shard-JDBC 分表配置
*/
private static TableRuleConfiguration getTableRule01() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_one");
result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));
return result;
}
private static TableRuleConfiguration getTableRule02() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_two");
result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));
return result;
}
}
Spring Boot集成sharding-jdbc实现分库分表的更多相关文章
- Sharding Sphere的分库分表
什么是 ShardingSphere? 1.一套开源的分布式数据库中间件解决方案 2.有三个产品:Sharding-JDBC 和 Sharding-Proxy 3.定位为关系型数据库中间件,合理在分布 ...
- spring boot:shardingsphere多数据源,支持未分表的数据源(shardingjdbc 4.1.1)
一,为什么要给shardingsphere配置多数据源? 1,shardingjdbc默认接管了所有的数据源, 如果我们有多个非分表的库时,则最多只能设置一个为默认数据库, 其他的非分表数据库不能访问 ...
- Spring Boot中整合Sharding-JDBC单库分表示例
本文是Sharding-JDBC采用Spring Boot Starter方式配置第二篇,第一篇是读写分离讲解,请参考:<Spring Boot中整合Sharding-JDBC读写分离示例> ...
- Spring boot项目集成Sharding Jdbc
环境 jdk:1.8 framework: spring boot, sharding jdbc database: MySQL 搭建步骤 在pom 中加入sharding 依赖 <depend ...
- 分库分表技术演进&最佳实践
每个优秀的程序员和架构师都应该掌握分库分表,这是我的观点. 移动互联网时代,海量的用户每天产生海量的数量,比如: 用户表 订单表 交易流水表 以支付宝用户为例,8亿:微信用户更是10亿.订单表更夸张, ...
- 分库分表后跨分片查询与Elastic Search
携程酒店订单Elastic Search实战:http://www.lvesu.com/blog/main/cms-610.html 为什么分库分表后不建议跨分片查询:https://www.jian ...
- 【大数据和云计算技术社区】分库分表技术演进&最佳实践笔记
1.需求背景 移动互联网时代,海量的用户每天产生海量的数量,这些海量数据远不是一张表能Hold住的.比如 用户表:支付宝8亿,微信10亿.CITIC对公140万,对私8700万. 订单表:美团每天几千 ...
- java 取模运算% 实则取余 简述 例子 应用在数据库分库分表
java 取模运算% 实则取余 简述 例子 应用在数据库分库分表 取模运算 求模运算与求余运算不同.“模”是“Mod”的音译,模运算多应用于程序编写中. Mod的含义为求余.模运算在数论和程序设计中 ...
- spring boot sharding-jdbc实现分佈式读写分离和分库分表的实现
分布式读写分离和分库分表采用sharding-jdbc实现. sharding-jdbc是当当网推出的一款读写分离实现插件,其他的还有mycat,或者纯粹的Aop代码控制实现. 接下面用spring ...
随机推荐
- 2018.12-2019.1 TO-DO LIST
AC自动机 P3808 [模板]AC自动机(简单版)(完成时间:2018.12.06) P3796 [模板]AC自动机(加强版)(完成时间:2018.12.06) P2444 [POI2000]病毒( ...
- weblogic之cve-2015-4852分析(重写)
前言 有时间打算分析weblogic历史漏洞,但是又要面试啥的,没空.又刚好最近面试会问weblogic反序列化.具体啥时候分析weblogic反序列化,可能会在护网后,或者我开学了再分析.期间可能我 ...
- 最新版Swagger 3升级指南和新功能体验!
Swagger 3.0 发布已经有一段时间了,它于 2020.7 月 发布,但目前市面上使用的主流版本还是 Swagger 2.X 版本和少量的 1.X 版本,然而作为一名合格的程序员怎么能不折腾新技 ...
- [源码分析] 消息队列 Kombu 之 Hub
[源码分析] 消息队列 Kombu 之 Hub 0x00 摘要 本系列我们介绍消息队列 Kombu.Kombu 的定位是一个兼容 AMQP 协议的消息队列抽象.通过本文,大家可以了解 Kombu 中的 ...
- 快速了解C# 8.0中“可空引用类型(Nullable reference type)”语言特性
Visual C# 8.0中引入了可空引用类型(Nullable reference type),通过编译器提供的强大功能,帮助开发人员尽可能地规避由空引用带来的代码问题.这里我大致介绍一下可空引用类 ...
- 通过 Battery Historian 工具分析 Android APP 耗电情况
电量统计模块概述 Android 从两个层面统计电量的消耗,分别为 软件排行榜 及 硬件排行榜.它们各有自己的耗电榜单,软件排行榜为机器中每个 App 的耗电榜单,硬件排行榜则为各个硬件的耗电榜单.这 ...
- Git本地仓库基本操作-1
code[class*="language-"], pre[class*="language-"] { color: rgba(51, 51, 51, 1); ...
- [Design Pattern With Go]设计模式-单例模式
定义 一个类只允许创建一个对象(或者实例),那这个类就是一个单例类,这种设计模式就叫作单例模式.当某些数据只需要在系统中保留一份的时候,可以选择使用单例模式. 饿汉式 饿汉式的实现方式比较简单.在类加 ...
- ubuntu系统编译安装OpenCV 4.4
内容转载自我的博客 目录 前言 1. 下载源码 2. 安装各种依赖 3. 开始编译安装 4. 配置C++开发环境 5. 程序执行时加载动态库*.so 6. 测试cpp文件 7. 配置python3的o ...
- python基础(十七):函数
在正式讲述函数之前,先给大家说明一点:编写函数就是"面向过程"的方式,编写类就是"面向对象"的方式.你如果不知道这是啥意思,至少别人提到这2个词你应该知道是在干 ...