Deploying Keras model on Tensorflow Serving--
keras训练了个二分类的模型。需求是把keras模型跑到 tensorflow serving上 (TensorFlow Serving 系统用于在生产环境中运行模型)
keras模型转 tensorflow模型
我把 keras模型转tensorflow serving模型所使用的方法如下:
1、要拿到算法训练好的keras模型文件(一个HDF5文件)
该文件应该包含:
- 模型的结构,以便重构该模型
- 模型的权重
- 训练配置(损失函数,优化器等)
- 优化器的状态,以便于从上次训练中断的地方开始
2、编写 keras模型转tensorflow serving模型的代码
import pandas as pd
import os
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
...
def build_model():
############
...
return model
def save_model_for_production(model, version, path='prod_models'):
tf.keras.backend.set_learning_phase(1)
if not os.path.exists(path):
os.mkdir(path)
export_path = os.path.join(
tf.compat.as_bytes(path),
tf.compat.as_bytes(version))
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
model_input = tf.saved_model.utils.build_tensor_info(model.input)
model_output = tf.saved_model.utils.build_tensor_info(model.output)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'inputs': model_input},
outputs={'output': model_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
with tf.keras.backend.get_session() as sess:
builder.add_meta_graph_and_variables(
sess=sess, tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict':
prediction_signature,
})
builder.save()
if __name__ == '__main__':
model_file = './my_model.h5'
if (os.path.isfile(model_file)):
print('model file detected. Loading.')
model = tf.keras.models.load_model(model_file)
else:
print('No model file detected. Starting from scratch.')
model = build_model()
model.compile(loss='binary_crossentropy', optimizer="adam", metrics=['accuracy'])
model.save(model_file)
model.fit(X_train, y_train, batch_size=100, epochs=1, validation_data=(X_test, y_test))
model.summary()
export_path = "tf-model"
save_model_for_production(model, "1", export_path)
上面的例子将模型保存到 tf-model目录下
tf-model目录结构如下:
tf-model/
└── 1
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
saved_model.pb 是能在 tensorflow serving跑起来的模型。
3、跑模型
tensorflow_model_server --port=9000 --model_name="username" --model_base_path="/data/models/tf-model/"
标准输出如下(算法模型已成功跑起来了):
Running ModelServer at 0.0.0.0:00 ...
4、客户端代码
#!/usr/bin/env python
# encoding: utf-8
"""
@version: v1.0
@author: zwqjoy
@contact: zwqjoy@163.com
@site: https://blog.csdn.net/zwqjoy
@file: client
@time: 2018/6/29 15:02
"""
from __future__ import print_function
from grpc.beta import implementations
import tensorflow as tf
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
import numpy as np
tf.app.flags.DEFINE_string('server', 'localhost:9000',
'PredictionService host:port')
FLAGS = tf.app.flags.FLAGS
def main(_):
host, port = FLAGS.server.split(':')
channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
# Send request
# See prediction_service.proto for gRPC request/response details.
data = np.array([4, 0, 0, 0, 1, 0, 1])
data = data.astype(np.float32)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'username' # 这个name跟tensorflow_model_server --model_name="username" 对应
request.model_spec.signature_name = 'predict' # 这个signature_name 跟signature_def_map 对应
request.inputs['inputs'].CopyFrom(
tf.contrib.util.make_tensor_proto(data, shape=(1, 7))) # shape跟 keras的model.input类型对应
result = stub.Predict(request, 10.0) # 10 secs timeout
print(result)
if __name__ == '__main__':
tf.app.run()
客户端跑出的结果是:
outputs {
key: "output"
value {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
dim {
size: 1
}
}
float_val: 0.976889811523
}
}
float_val: 0.976889811523 就是我们需要的结果(概率)
keras模型转 tensorflow模型的一些说明
1、 keras 保存模型
可以使用model.save(filepath)
将Keras模型和权重保存在一个HDF5文件中,该文件将包含:
- 模型的结构,以便重构该模型
- 模型的权重
- 训练配置(损失函数,优化器等)
- 优化器的状态,以便于从上次训练中断的地方开始
当然这个 HDF5 也可以是用下面的代码生成
from keras.models import load_model
model.save('my_model.h5')
2、 keras 加载模型
keras 加载模型(中间部分代码省略了):
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
from keras.models import load_model
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000,28,28)
print('x_shape:',x_train.shape)
# (60000)
print('y_shape:',y_train.shape)
# (60000,28,28)->(60000,784)
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
# 载入模型
model = load_model('model.h5')
# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
# 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=2)
# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
# 保存参数,载入参数
model.save_weights('my_model_weights.h5')
model.load_weights('my_model_weights.h5')
keras 模型转tensorflow serving 模型的一些坑
希望能让新手少走一些弯路
坑1:过时的生成方法
有些方法已经过时了(例如下面这种):
from tensorflow_serving.session_bundle import exporter
export_path = ... # where to save the exported graph
export_version = ... # version number (integer)
saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
signature = exporter.classification_signature(input_tensor=model.input,
scores_tensor=model.output)
model_exporter.init(sess.graph.as_graph_def(),
default_graph_signature=signature)
model_exporter.export(export_path, tf.constant(export_version), sess)
如果使用这种过时的方法,用tensorflow serving 跑模型的时候会提示:
WARNING:tensorflow:From test.py:107: Exporter.export (from tensorflow.contrib.session_bundle.exporter) is deprecated and will be removed after 2017-06-30.
Instructions for updating:
No longer supported. Switch to SavedModel immediately.
从warning中 显然可以知道这种方法要被抛弃了,不再支持这种方法了, 建议我们转用 SaveModel方法。
填坑大法: 使用 SaveModel
def save_model_for_production(model, version, path='prod_models'):
tf.keras.backend.set_learning_phase(1)
if not os.path.exists(path):
os.mkdir(path)
export_path = os.path.join(
tf.compat.as_bytes(path),
tf.compat.as_bytes(version))
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
model_input = tf.saved_model.utils.build_tensor_info(model.input)
model_output = tf.saved_model.utils.build_tensor_info(model.output)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'inputs': model_input},
outputs={'output': model_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
with tf.keras.backend.get_session() as sess:
builder.add_meta_graph_and_variables(
sess=sess, tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict':
prediction_signature,
})
builder.save()
参考:
Deploying Keras model on Tensorflow Serving with GPU support
https://github.com/amir-abdi/keras_to_tensorflow
Deploying Keras model on Tensorflow Serving--的更多相关文章
- Problem after converting keras model into Tensorflow pb - 将keras模型转换为Tensorflow pb后的问题
I'm using keras 2.1.* with tensorflow 1.13.* backend. I save my model during training with .h5 forma ...
- 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...
- tensorflow 2.0 技巧 | 自定义tf.keras.Model的坑
自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_form ...
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- 通过Docker构建TensorFlow Serving
最近在用Docker搭建TensorFlow Serving, 在查阅了官方资料后,发现其文档内有不少冗余的步骤,便一步步排查,终于找到了更简单的Docker镜像构建方法.这里有两种方式: 版本一: ...
- tensorflow serving
1.安装tensorflow serving 1.1确保当前环境已经安装并可运行tensorflow 从github上下载源码 git clone --recurse-submodules https ...
- tensorflow serving 之minist_saved_model.py解读
最近在学习tensorflow serving,但是就这样平淡看代码可能觉得不能真正思考,就想着写个文章看看,自己写给自己的,就像自己对着镜子演讲一样,写个文章也像自己给自己讲课,这样思考的比较深,学 ...
- Tensorflow Serving 模型部署和服务
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/233614 ...
- Tensorflow Serving Docker compose 部署服务细节(Ubuntu)
[摘要] Tensorflow Serving 是tf模型持久化的重要工具,本篇介绍如何通过Docker compose搭建并调试TensorFlow Serving TensorFlow Servi ...
随机推荐
- ubuntu18.04时区设置
1.运行命令 sudo tzselect 2.选择大区 选择亚洲Asia,继续选择中国China,最后选择北京Beijing 3.建立软链 ln -sf /usr/share/zoneinfo/Asi ...
- linux从0开始----01
1.VMware 虚拟机安装与卸载 推荐安装较高版本,11.x以后的.本课程安装12.x版本,需要序列号. 2.在vmware中安装centos客户机.初学者选择典型安装也可以. 1.vware文件菜 ...
- IMDb、烂番茄、MTC、各种电影行业评分名字整理
这篇不是技术文章,就是对总是看到但是不知道具体是什么的一些电影名词.评分.来源,学习一下. IMDb 互联网电影资料库(Internet Movie Database,简称IMDb)是一个关于电影演员 ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- 文件上传的三种模式-Java
文件上传的三种方式-Java 前言:因自己负责的项目(jetty内嵌启动的SpringMvc)中需要实现文件上传,而自己对java文件上传这一块未接触过,且对 Http 协议较模糊,故这次采用渐进的方 ...
- rails应用的部署
简单部署 RAILS_ENV=production rake secret /etc/profile export SECRET_KEY_BASE=刚才生成的密钥 source /etc/profil ...
- 转 Refresh Excel Pivot Tables Automatically Using SSIS Script Task
Refresh Excel Pivot Tables Automatically Using SSIS Script Task https://www.mssqltips.com/sqlservert ...
- JAVA程序CPU 100%问题排查
做JAVA开发的同学一定遇到过的爆表问题,看这里解决 https://www.cnblogs.com/qcloud1001/p/9773947.html 本文由净地发表于云+社区专栏 记一次Ja ...
- Linux下Oracle数据库的安装
记录详细过程以备使用 一.准备安装 为了确保Oracle数据库11g能够成功安装,您需要做好准备工作,例如检查网络配置.更改Linux内核参数.创建用户Oracle.创建安装目录.设置用户Oracle ...
- 关于Nginx设置端口号,在Asp.net 获取不到的,解决办法
不知道你有没有遇到过这样的问题,网站访客多起来后,心里很是高兴,加上了Nginx反向代理,出问题了 原来是这么写的: Request.Url.ToString() 输出是这样的: http://www ...