Convert Adjacency matrix into edgelist
Table of Contents
- [Edge List <-- Adjacency Matrix](# Edge List <-- Adjacency Matrix)
- [Edge List --> Adjacency Matrix](# Edge List --> Adjacency Matrix)
- [About Adjacency List](#About Adjacency List)
Edge List <-- Adjacency Matrix
'''
ref: https://www.cnblogs.com/sonictl/p/10688533.html
convert adjMatrix into edgelist: 'data/unweighted_edgelist.number' or 'data/weighted_edgelist.number''
input: adjacency matrix with delimiter=', '
it can process:
- Unweighted directed graph
- Weighted directed graph
output: edgelist (unweighted and weighted)
'''
import numpy as np
import networkx as nx
# -------DIRECTED Graph, Unweighted-----------
# Unweighted directed graph:
a = np.loadtxt('data/test_adjMatrix.txt', delimiter=', ', dtype=int)
D = nx.DiGraph(a)
nx.write_edgelist(D, 'data/unweighted_edgelist.number', data=False) # output
edges = [(u, v) for (u, v) in D.edges()]
print(edges)
# -------DIRECTED Graph, Weighted------------
# Weighted directed graph (weighted adj_matrix):
a = np.loadtxt('data/adjmatrix_weight_sample.txt', delimiter=', ', dtype=float)
D = nx.DiGraph(a)
nx.write_weighted_edgelist(D, 'data/weighted_edgelist.number') # write the weighted edgelist into file
# print(D.edges)
elarge = [(u, v, d['weight']) for (u, v, d) in D.edges(data=True) if d['weight'] > 0.]
print(elarge) # class: list
# -------UNDIRECTED Graph -------------------
# for undirected graph, simply use:
udrtG = D.to_undirected()
'''
test_adjMatrix.txt: (Symmetric matrices if unweighted graph)
---
0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
===
adjmatrix_weight_sample.txt:
---
0, 0.5, 0.5, 0.5, 0, 0.5, 0.5, 0
0, 0, 0.5, 0, 0, 0, 0.5, 0.5
0, 0, 0, 0.5, 0.5, 0, 0, 0
0, 0.5, 0, 0, 0.5, 0.5, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0.5, 0, 0, 0, 0, 0
===
output:
---
[(0, 1), (0, 2), (0, 3), (0, 5), (0, 6), (1, 2), (1, 6), (1, 7), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (7, 2)]
[(0, 1, 0.5), (0, 2, 0.5), (0, 3, 0.5), (0, 5, 0.5), (0, 6, 0.5), (1, 2, 0.5), (1, 6, 0.5), (1, 7, 0.5), (2, 3, 0.5), (2, 4, 0.5), (3, 1, 0.5), (3, 4, 0.5), (3, 5, 0.5), (7, 2, 0.5)]
===
'''
Edge List --> Adjacency Matrix
'''
https://networkx.github.io/documentation/networkx-2.2/reference/generated/networkx.linalg.graphmatrix.adjacency_matrix.html
'''
import numpy
import networkx as nx
# edgelist to adjacency matrix
# way1: G=nx.read_edgelist
D = nx.read_edgelist('input/edgelist_sample.txt', create_using=nx.DiGraph(), nodetype=int) # create_using=nx.Graph()
print(D.edges)
print(D.nodes)
# way2:
'''
a = numpy.loadtxt('input/edgelist_sample.txt', dtype=int)
edges = [tuple(e) for e in a]
D = nx.DiGraph()
D.add_edges_from(edges) # D.add_edges_from(nodes); D.edges; D.nodes
D.name = 'digraph_sample'
print(nx.info(D))
udrtG = D.to_undirected()
udrtG.name = 'udrt'
print(nx.info(udrtG))
'''
# dump to file as adjacency Matrix
A = nx.adjacency_matrix(D, nodelist=list(range(len(D.nodes)))) # nx.adjacency_matrix(D, nodelist=None, weight='weight') # Return type: SciPy sparse matrix
# print(A) # type < SciPy sparse matrix >
A_dense = A.todense() # type-> numpy.matrixlib.defmatrix.matrix
print(A_dense, type(A_dense))
print('--- See two row of matrix equal or not: ---')
print((numpy.equal(A_dense[5], A_dense[6])).all())
# print('to_numpy_array:\n', nx.to_numpy_array(D, nodelist=list(range(len(D.nodes)))))
# print('to_dict_of_dicts:\n', nx.to_dict_of_dicts(D, nodelist=list(range(len(D.nodes)))))
About Adjacency LIST
nx.read_adjlist()
Convert Adjacency matrix into edgelist
import numpy as np
#read matrix without head.
a = np.loadtxt('admatrix.txt', delimiter=', ', dtype=int) #set the delimiter as you need
print "a:"
print a
print 'shape:',a.shape[0] ,"*", a.shape[1]
num_nodes = a.shape[0] + a.shape[1]
num_edge = 0
edgeSet = set()
for row in range(a.shape[0]):
for column in range(a.shape[1]):
if a.item(row,column) == 1 and (column,row) not in edgeSet: #get rid of repeat edge
num_edge += 1
edgeSet.add((row,column))
print '\nnum_edge:', num_edge
print 'edge Set:', edgeSet
print ''
for edge in edgeSet:
print edge[0] , edge[1]
Sample Adjacency Matrix Input file:
0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
Convert Adjacency matrix into edgelist的更多相关文章
- 路径规划 Adjacency matrix 传球问题
建模 问题是什么 知道了问题是什么答案就ok了 重复考虑 与 重复计算 程序可以重复考虑 但往目标篮子中放入时,放不放把握好就ok了. 集合 交集 并集 w 路径规划 字符串处理 42423 424 ...
- 【leetcode】1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix
题目如下: Given a m x n binary matrix mat. In one step, you can choose one cell and flip it and all the ...
- LeetCode 1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix (最少翻转次数将二进制矩阵全部置为0)
给一个矩阵mat,每个格子都是0或1,翻转一个格子会将该格子以及相邻的格子(有共同边)全部翻转(0变为1,1变为0) 求问最少需要翻转几次将所有格子全部置为0. 这题的重点是数据范围,比赛结束看了眼数 ...
- Adjacency matrix based Graph
Interface AddVertex(T data) AddEdge(int from, int to) DFS BFS MST TopSort PrintGraph using System; u ...
- R matrix 转换为 dataframe
When I try converting a matrix to a data frame, it works for me: > x <- matrix(1:6,ncol=2,dimn ...
- 拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明
摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Lapla ...
- Distance matrix
w https://en.wikipedia.org/wiki/Distance_matrix For example, suppose these data are to be analyzed, ...
- 用matalb、python画聚类结果图
用matlab %读入聚类后的数据, 已经分好级别了,例如前4行是亚洲一流, %-13是亚洲二流,-24是亚洲三流 a=xlsread('C:\Users\Liugengxin\Desktop\1.x ...
- OO课程第三次总结QWQ
调研,然后总结介绍规格化设计的大致发展历史和为什么得到了人们的重视 emmm为这个问题翻遍百度谷歌知乎也没有得到答案,那我就把自己认为最重要的两点简要说明一下吧,欢迎大家补充~ 1.便于完成代码的重用 ...
随机推荐
- MHA-Atlas-MySQL高可用集群
主机名映射 [root@localhost ~]# cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 loca ...
- MySQL 8.0常见问题
1.连接问题: 1.1:8.0的驱动地址更换由原来的com.mysql.jdbc.Driver改为com.mysql.cj.jdbc.Driver 1.2:8.0以后访问地址要加上时区.编码等属性jd ...
- 【笔记】 laravel 的路由
路由简介 : 请求对应着路由,将用户的请求转发给相应的程序进行处理 建立URL与程序之间的映射 Laravel中的请求类型:get.post.put.patch.delete Route::get ...
- 学习笔记CB002:词干提取、词性标注、中文切词、文档分类
英文词干提取器,import nltk,porter = nltk.PorterStemmer(),porter.stem('lying') . 词性标注器,pos_tag处理词序列,根据句子动态判断 ...
- Python基础:八、python基本数据类型
一.什么是数据类型? 我们人类可以很容易的分清数字与字符的区别,但是计算机并不能,计算机虽然很强大,但从某种角度上来看又很傻,除非你明确告诉它,"1"是数字,"壹&quo ...
- 序列化、time、random、hashlib、sys模块
•很多常用和内置模块,我们只需要掌握他们的用法而暂时不用考虑内部是如何实现的,这些模块大大提升了开发效率 ! 1.json模块与pickle模块 •json 如果你有这样的困扰,当希望把一种数据存到硬 ...
- expdp之include参数——实现表级别的expdp操作
需求是这样的:想将A库的某schema中的一部分表导入到B库的某schema中. 第一可以想到的是使用expdp工具,但是如何只挑选某些表呢,通过查看官方文档,include参数可以实现该需求. in ...
- shell生成随机字符串
#!/bin/bash i=1while [ $i -le 10000 ]doa=`echo `< /dev/urandom tr -dc A-Za-z0-9 | head -c6``echo ...
- 【转】/etc/rc.d/rc与/etc/rc.d/init.d的关系介绍
/etc/rc.d/init.d这个目录下的脚本就类似与windows中的注册表,在系统启动的时候执行.程序运行到这里(init进程读取了运行级别),相信从命名的角度大家也能猜到该运行/etc/rc. ...
- theano安装问题
WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain` ...