Table of Contents

  1. [Edge List <-- Adjacency Matrix](# Edge List <-- Adjacency Matrix)
  2. [Edge List --> Adjacency Matrix](# Edge List --> Adjacency Matrix)
  3. [About Adjacency List](#About Adjacency List)

Edge List <-- Adjacency Matrix

'''
ref: https://www.cnblogs.com/sonictl/p/10688533.html
convert adjMatrix into edgelist: 'data/unweighted_edgelist.number' or 'data/weighted_edgelist.number'' input: adjacency matrix with delimiter=', '
it can process:
- Unweighted directed graph
- Weighted directed graph output: edgelist (unweighted and weighted) ''' import numpy as np
import networkx as nx # -------DIRECTED Graph, Unweighted-----------
# Unweighted directed graph:
a = np.loadtxt('data/test_adjMatrix.txt', delimiter=', ', dtype=int)
D = nx.DiGraph(a)
nx.write_edgelist(D, 'data/unweighted_edgelist.number', data=False) # output edges = [(u, v) for (u, v) in D.edges()]
print(edges) # -------DIRECTED Graph, Weighted------------
# Weighted directed graph (weighted adj_matrix):
a = np.loadtxt('data/adjmatrix_weight_sample.txt', delimiter=', ', dtype=float)
D = nx.DiGraph(a)
nx.write_weighted_edgelist(D, 'data/weighted_edgelist.number') # write the weighted edgelist into file # print(D.edges)
elarge = [(u, v, d['weight']) for (u, v, d) in D.edges(data=True) if d['weight'] > 0.]
print(elarge) # class: list # -------UNDIRECTED Graph -------------------
# for undirected graph, simply use:
udrtG = D.to_undirected() '''
test_adjMatrix.txt: (Symmetric matrices if unweighted graph)
---
0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
=== adjmatrix_weight_sample.txt:
---
0, 0.5, 0.5, 0.5, 0, 0.5, 0.5, 0
0, 0, 0.5, 0, 0, 0, 0.5, 0.5
0, 0, 0, 0.5, 0.5, 0, 0, 0
0, 0.5, 0, 0, 0.5, 0.5, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0.5, 0, 0, 0, 0, 0
=== output:
---
[(0, 1), (0, 2), (0, 3), (0, 5), (0, 6), (1, 2), (1, 6), (1, 7), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (7, 2)]
[(0, 1, 0.5), (0, 2, 0.5), (0, 3, 0.5), (0, 5, 0.5), (0, 6, 0.5), (1, 2, 0.5), (1, 6, 0.5), (1, 7, 0.5), (2, 3, 0.5), (2, 4, 0.5), (3, 1, 0.5), (3, 4, 0.5), (3, 5, 0.5), (7, 2, 0.5)]
===
'''

Edge List --> Adjacency Matrix

'''
https://networkx.github.io/documentation/networkx-2.2/reference/generated/networkx.linalg.graphmatrix.adjacency_matrix.html ''' import numpy
import networkx as nx # edgelist to adjacency matrix # way1: G=nx.read_edgelist
D = nx.read_edgelist('input/edgelist_sample.txt', create_using=nx.DiGraph(), nodetype=int) # create_using=nx.Graph()
print(D.edges)
print(D.nodes) # way2:
'''
a = numpy.loadtxt('input/edgelist_sample.txt', dtype=int)
edges = [tuple(e) for e in a]
D = nx.DiGraph()
D.add_edges_from(edges) # D.add_edges_from(nodes); D.edges; D.nodes
D.name = 'digraph_sample'
print(nx.info(D)) udrtG = D.to_undirected()
udrtG.name = 'udrt'
print(nx.info(udrtG))
''' # dump to file as adjacency Matrix
A = nx.adjacency_matrix(D, nodelist=list(range(len(D.nodes)))) # nx.adjacency_matrix(D, nodelist=None, weight='weight') # Return type: SciPy sparse matrix
# print(A) # type < SciPy sparse matrix >
A_dense = A.todense() # type-> numpy.matrixlib.defmatrix.matrix
print(A_dense, type(A_dense)) print('--- See two row of matrix equal or not: ---')
print((numpy.equal(A_dense[5], A_dense[6])).all()) # print('to_numpy_array:\n', nx.to_numpy_array(D, nodelist=list(range(len(D.nodes))))) # print('to_dict_of_dicts:\n', nx.to_dict_of_dicts(D, nodelist=list(range(len(D.nodes)))))

About Adjacency LIST

nx.read_adjlist()

Convert Adjacency matrix into edgelist

import numpy as np

#read matrix without head.
a = np.loadtxt('admatrix.txt', delimiter=', ', dtype=int) #set the delimiter as you need
print "a:"
print a
print 'shape:',a.shape[0] ,"*", a.shape[1] num_nodes = a.shape[0] + a.shape[1] num_edge = 0
edgeSet = set() for row in range(a.shape[0]):
for column in range(a.shape[1]):
if a.item(row,column) == 1 and (column,row) not in edgeSet: #get rid of repeat edge
num_edge += 1
edgeSet.add((row,column)) print '\nnum_edge:', num_edge
print 'edge Set:', edgeSet
print ''
for edge in edgeSet:
print edge[0] , edge[1]

Sample Adjacency Matrix Input file:

0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0

Convert Adjacency matrix into edgelist的更多相关文章

  1. 路径规划 Adjacency matrix 传球问题

    建模 问题是什么 知道了问题是什么答案就ok了 重复考虑 与 重复计算 程序可以重复考虑  但往目标篮子中放入时,放不放把握好就ok了. 集合 交集 并集 w 路径规划 字符串处理 42423 424 ...

  2. 【leetcode】1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix

    题目如下: Given a m x n binary matrix mat. In one step, you can choose one cell and flip it and all the ...

  3. LeetCode 1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix (最少翻转次数将二进制矩阵全部置为0)

    给一个矩阵mat,每个格子都是0或1,翻转一个格子会将该格子以及相邻的格子(有共同边)全部翻转(0变为1,1变为0) 求问最少需要翻转几次将所有格子全部置为0. 这题的重点是数据范围,比赛结束看了眼数 ...

  4. Adjacency matrix based Graph

    Interface AddVertex(T data) AddEdge(int from, int to) DFS BFS MST TopSort PrintGraph using System; u ...

  5. R matrix 转换为 dataframe

    When I try converting a matrix to a data frame, it works for me: > x <- matrix(1:6,ncol=2,dimn ...

  6. 拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明

    摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Lapla ...

  7. Distance matrix

    w https://en.wikipedia.org/wiki/Distance_matrix For example, suppose these data are to be analyzed, ...

  8. 用matalb、python画聚类结果图

    用matlab %读入聚类后的数据, 已经分好级别了,例如前4行是亚洲一流, %-13是亚洲二流,-24是亚洲三流 a=xlsread('C:\Users\Liugengxin\Desktop\1.x ...

  9. OO课程第三次总结QWQ

    调研,然后总结介绍规格化设计的大致发展历史和为什么得到了人们的重视 emmm为这个问题翻遍百度谷歌知乎也没有得到答案,那我就把自己认为最重要的两点简要说明一下吧,欢迎大家补充~ 1.便于完成代码的重用 ...

随机推荐

  1. maven使用utf8等

    pom.xml: <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncodi ...

  2. java web 登录后更新JSESSIONID

    https://huangqiqing123.iteye.com/blog/2031455 登录前的请求一般都是http的,http是不安全的,假设用户登录前的JSESSIONID被人取得,如果登录后 ...

  3. canvas绘图——根据鼠标位置进行缩放的实现原理

    以任一点 A 缩放的基本原理: A 点为鼠标位置,正常放大是以原点放大,那么放大后 A 点就会变到 A1 点的位置 x1, y1.然后再将画布进行位移,将 A1 的位置移动到 A,则完成以 A 点缩放 ...

  4. git 创建删除分支

    进入仓库目录 -- 查看本地分支 git branch -- 查看远程分支 git branch -r -- 查看远程和本地的分支 git branch -a -- 下载远程分支代码,并切换到分支 进 ...

  5. 【java编程】java的关键字修饰符

    一.transient java语言的关键字,变量修饰符,如果用transient声明一个实例变量,当对象存储时,它的值不需要维持.换句话来说就是,用transient关键字标记的成员变量不参与序列化 ...

  6. Golang之接口

  7. kafka connect 使用说明

    KAFKA CONNECT 使用说明 一.概述 kafka connect 是一个可扩展的.可靠的在kafka和其他系统之间流传输的数据工具.简而言之就是他可以通过Connector(连接器)简单.快 ...

  8. Flutter 常用命令

    Flutter 常用命令: Flutter 常用命令 说明 flutter 列出所有的命令 flutter help 查看具体命令的帮助信息 flutter doctor 查看是否还需要安装其它依赖 ...

  9. NLP VS NLU

    NLP(Natural Language Processing )自然语言处理:是计算机科学,人工智能和语言学的交叉领域.目标是让计算机处理或“理解”自然语言,以执行语言翻译和问题回答等任务.NLU  ...

  10. H3C交换机IRF典型配置举例LACP MAD检测方式

    一.组网需求 由于公司人员激增,接入层交换机提供的端口数目已经不能满足PC的接入需求.现需要在保护现有投资的基础上扩展端口接入数量,并要求网络易管理.易维护. 二.组网图 三.配置思路 Device ...