https://leetcode.com/problems/can-i-win/description/

In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

Example

Input:
maxChoosableInteger = 10
desiredTotal = 11 Output:
false Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.

Sol:

After solving several "Game Playing" questions in leetcode, I find them to be pretty similar. Most of them can be solved using the top-down DP approach, which "brute-forcely" simulates every possible state of the game.

The key part for the top-down dp strategy is that we need to avoid repeatedly solving sub-problems. Instead, we should use some strategy to "remember" the outcome of sub-problems. Then when we see them again, we instantly know their result. By doing this, we can always reduce time complexity from exponential to polynomial.
(EDIT: Thanks for @billbirdh for pointing out the mistake here. For this problem, by applying the memo, we at most compute for every subproblem once, and there are O(2^n) subproblems, so the complexity is O(2^n) after memorization. (Without memo, time complexity should be like O(n!))

For this question, the key part is: what is the state of the game? Intuitively, to uniquely determine the result of any state, we need to know:

  1. The unchosen numbers
  2. The remaining desiredTotal to reach

A second thought reveals that 1) and 2) are actually related because we can always get the 2) by deducting the sum of chosen numbers from original desiredTotal.

Then the problem becomes how to describe the state using 1).

In my solution, I use a boolean array to denote which numbers have been chosen, and then a question comes to mind, if we want to use a Hashmap to remember the outcome of sub-problems, can we just use Map<boolean[], Boolean> ? Obviously we cannot, because the if we use boolean[] as a key, the reference to boolean[] won't reveal the actual content in boolean[].

Since in the problem statement, it says maxChoosableInteger will not be larger than 20, which means the length of our boolean[] arraywill be less than 20. Then we can use an Integer to represent this boolean[] array. How?

Say the boolean[] is {false, false, true, true, false}, then we can transfer it to an Integer with binary representation as 00110. Since Integer is a perfect choice to be the key of HashMap, then we now can "memorize" the sub-problems using Map<Integer, Boolean>.

The rest part of the solution is just simulating the game process using the top-down dp.

class Solution {

    Map<Integer, Boolean> map;
boolean[] used; public boolean canIWin(int maxChoosableInteger, int desiredTotal) { // Brute force. Game playing problems are all about brute force basically... int sum = (1+maxChoosableInteger) * maxChoosableInteger/2;
if (sum < desiredTotal) return false;
if (desiredTotal <= 0) return true; map = new HashMap();
used = new boolean[maxChoosableInteger+1];
return helper(desiredTotal); } public boolean helper(int desiredTotal){
if(desiredTotal <= 0) return false;
int key = format(used);
if (!map.containsKey(key)){
// try every unchosen number as next step
for (int i = 1; i < used.length; i++){
if(!used[i]){
used[i] = true;
// check if this leads to a win (i.e. the other player lose) if (!helper(desiredTotal - i)){
map.put(key, true);
used[i] = false;
return true;
} used[i] = false;
} } map.put(key, false);
} return map.get(key);
} // transfer boolean[] to an Integer public int format(boolean[] used){
int num = 0;
for(boolean b: used){
// i would never think of using bit manipulation on this....
num <<= 1;
if(b) num |= 1;
} return num;
} }

464. Can I Win的更多相关文章

  1. 状态压缩 - LeetCode #464 Can I Win

    动态规划是一种top-down求解模式,关键在于分解和求解子问题,然后根据子问题的解不断向上递推,得出最终解 因此dp涉及到保存每个计算过的子问题的解,这样当遇到同样的子问题时就不用继续向下求解而直接 ...

  2. [LeetCode] 464. Can I Win 我能赢吗

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  3. LeetCode 464. Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  4. 464 Can I Win 我能赢吗

    详见:https://leetcode.com/problems/can-i-win/description/ C++: class Solution { public: bool canIWin(i ...

  5. [leetcode] 464. Can I Win (Medium)

    原题链接 两个人依次从1~maxNum中选取数字(不可重复选取同一个),累和.当一方选取数字累和后结果大于等于给定的目标数字,则此人胜利. 题目给一个maxNum和targetNum,要求判断先手能否 ...

  6. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  7. leetcode bugfree note

    463. Island Perimeterhttps://leetcode.com/problems/island-perimeter/就是逐一遍历所有的cell,用分离的cell总的的边数减去重叠的 ...

  8. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  9. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

随机推荐

  1. 序列号多个input输入demo

    <input class="inputs" type="text" maxlength="4" /> <input cla ...

  2. 如何高效的学习Java开发

    IT 行业的变化快是众人皆知的,需要持续去学习新的知识内容.但是,往往我们工作之后,经常发现学习的东西很少了,学习效率非常低,感觉自己到了一个瓶颈期,久而久之,就演变成『一年工作经验,重复去用十年』的 ...

  3. JEECG3.8 全套实战视频全部开放,免费下载!

    JEECG快速开发平台V3.8版本自去年10月份发布以来,下载使用数屡创新高,并受到众多开发者积极反馈.为帮助更多初学者能够快速上手,JEECG V3.8版本实战教程现已全面开放,免费下载!本教程深入 ...

  4. Django应用app创建及ORM

    一.重要知识点回顾: 1. form表单提交数据的注意事项: 1. 是form不是from,必须要有method和action (action用来指定你的数据提交到后台哪个地方,method用来指定你 ...

  5. python 使用多进程打开多个cmd窗口,并在子进程结束之后关闭cmd窗口

    额,我想表达的是使用os.system()打开另一个可执行文件,然后等待其结束,关闭cmd窗口 主要是我突发奇想想装逼; 如果只是用multiprocessing库的多进程,然后输出信息的话,根本没法 ...

  6. 关于 early Z 与 z-prepass

    今天在考虑优化MOBA项目中的树木时(采用了ALPHATEST)时,与同事讨论中深入了解了这两个概念. 以前居然不知道有early z的存在,真是惭愧.... 上个链接: 深入剖析GPU Early ...

  7. python os.path.isfile函数

    最近刚开始学习Python,做了个小练习:扫描当前目录及其子目录中的文件,找出文件名中含有指定关键字的文件并打印文件名.思路很简单,如果是文件则判断是否满足条件:如果是目录则进入目录搜索文件,递归. ...

  8. cent os安装filebeat

    先贴一下官方文档https://www.elastic.co/guide/en/beats/filebeat/6.6/filebeat-installation.html 我本次使用rpm的方式安装, ...

  9. 《DOM Scripting》学习笔记-——第九章 CSS-DOM

    本章内容: 一.style属性 二.如何检索样式信息 三.如何改变样式 属性: 包含位置信息:parentNode , nextSibling , previousSibling , childNod ...

  10. 并发系列2:Java并发的基石,volatile关键字、synchronized关键字、乐观锁CAS操作

    由并发大师Doug Lea操刀的并发包Concurrent是并发编程的重要包,而并发包的基石又是volatile关键字.synchronized关键字.乐观锁CAS操作这些基础.因此了解他们的原理对我 ...