处理大型文件是一种内存密集型操作,可能导致服务器耗尽RAM内存并交换到磁盘。让我们看一下使用Ruby处理CSV文件的几种方法,并测量内存消耗和速度性能。

Prepare CSV data sample

Before we start, let's prepare a CSV file data.csv with 1 million rows (~ 75 MB) to use in tests.

require 'csv'
require_relative './helpers' headers = ['id', 'name', 'email', 'city', 'street', 'country'] name = "Pink Panther"
email = "pink.panther@example.com"
city = "Pink City"
street = "Pink Road"
country = "Pink Country" print_memory_usage do
print_time_spent do
CSV.open('data.csv', 'w', write_headers: true, headers: headers) do |csv|
1_000_000.times do |i|
csv << [i, name, email, city, street, country]
end
end
end
end

Memory used and time spent

This script above requires the helpers.rb script which defines two helper methods for measuring and printing out the memory used and time spent.

require 'benchmark'

def print_memory_usage
memory_before = `ps -o rss= -p #{Process.pid}`.to_i
yield
memory_after = `ps -o rss= -p #{Process.pid}`.to_i puts "Memory: #{((memory_after - memory_before) / 1024.0).round(2)} MB"
end def print_time_spent
time = Benchmark.realtime do
yield
end puts "Time: #{time.round(2)}"
end

The results to generate the CSV file are:

$ ruby generate_csv.rb
Time: 5.17
Memory: 1.08 MB

Output can vary between machines, but the point is that when building the CSV file, the Ruby process did not spike in memory usage because the garbage collector (GC) was reclaiming the used memory. The memory increase of the process is about 1MB, and it created a CSV file with size of 75 MB.

$ ls -lah data.csv
-rw-rw-r-- 1 dalibor dalibor 75M Mar 29 00:34 data.csv

Reading CSV from a file at once (CSV.read)

Let's build a CSV object from a file (data.csv) and iterate with the following script:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
csv = CSV.read('data.csv', headers: true)
sum = 0 csv.each do |row|
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

The results are:

$ ruby parse1.rb
Sum: 499999500000
Time: 19.84
Memory: 920.14 MB

Important to note here is the big memory spike to 920 MB. That is because we build the whole CSV object in memory. That causes lots of String objects to be created by the CSV library and the used memory is much more higher than the actual size of the CSV file.

Parsing CSV from in memory String (CSV.parse)

Let's build a CSV object from a content in memory and iterate with the following script:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
content = File.read('data.csv')
csv = CSV.parse(content, headers: true)
sum = 0 csv.each do |row|
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

The results are:

$ ruby parse2.rb
Sum: 499999500000
Time: 21.71
Memory: 1003.69 MB

As we can see from the results, the memory increase is about the memory increase from the previous example plus the memory size of the file content that we read in memory (75MB).

Parsing CSV line by line from String in memory (CSV.new)

Let's now see what happens if we load the file content in a String and parse it line by line:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
content = File.read('data.csv')
csv = CSV.new(content, headers: true)
sum = 0 while row = csv.shift
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

The results are:

$ ruby parse3.rb
Sum: 499999500000
Time: 9.73
Memory: 74.64 MB

From the results we can see that the memory used is about the file size (75 MB) because the file content is loaded in memory and the processing time is about twice faster. This approach is useful when we have the content that we don't need to read it from a file and we just want to iterate over it line by line.

Parsing CSV file line by line from IO object

Can we do any better than the previous script? Yes, if we have the CSV content in a file. Let's use an IO file object directly:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
File.open('data.csv', 'r') do |file|
csv = CSV.new(file, headers: true)
sum = 0 while row = csv.shift
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end
end

The results are:

$ ruby parse4.rb
Sum: 499999500000
Time: 9.88
Memory: 0.58 MB

In the last script we see less than 1 MB of memory increase. Time seems to be a very little slower compared to previous script because there is more IO involved. The CSV library has a built in mechanism for this, CSV.foreach:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
sum = 0 CSV.foreach('data.csv', headers: true) do |row|
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

结果类似:

$ ruby parse5.rb
Sum: 499999500000
Time: 9.84
Memory: 0.53 MB

想象一下,您需要处理10GB或更大的大型CSV文件。决定使用最后一个策略似乎是显而易见的。

使用Ruby处理大型CSV文件的更多相关文章

  1. 建议42:使用pandas处理大型CSV文件

    # -*- coding:utf-8 -*- ''' CSV 常用API 1)reader(csvfile[, dialect='excel'][, fmtparam]),主要用于CSV 文件的读取, ...

  2. Python 从大型csv文件中提取感兴趣的行

    帮妹子处理一个2.xG 大小的 csv文件,文件太大,不宜一次性读入内存,可以使用open迭代器. with open(filename,'r') as file # 按行读取 for line in ...

  3. 109.大型的csv文件的处理方式

    HttpResponse对象将会将响应的数据作为一个整体返回,此时如果数据量非常大的话,长时间浏览器没有得到服务器的响应,就会超过默认的超时时间,返回超时.而StreamingHttpResponse ...

  4. Django学习笔记之视图高级-CSV文件生成

    生成CSV文件 有时候我们做的网站,需要将一些数据,生成有一个CSV文件给浏览器,并且是作为附件的形式下载下来.以下将讲解如何生成CSV文件. 生成小的CSV文件 这里将用一个生成小的CSV文件为例. ...

  5. Django生成CSV文件

    1.生成CSV文件 有时候我们做的网站,需要将一些数据,生成有一个CSV文件给浏览器,并且是作为附件的形式下载下来.以下将讲解如何生成CSV文件. 2.生成小的CSV文件 这里将用一个生成小的CSV文 ...

  6. POI以SAX方式解析Excel2007大文件(包含空单元格的处理) Java生成CSV文件实例详解

    http://blog.csdn.net/l081307114/article/details/46009015 http://www.cnblogs.com/dreammyle/p/5458280. ...

  7. [Python]-pandas模块-CSV文件读写

    Pandas 即Python Data Analysis Library,是为了解决数据分析而创建的第三方工具,它不仅提供了丰富的数据模型,而且支持多种文件格式处理,包括CSV.HDF5.HTML 等 ...

  8. CSV文件分割与列异常处理的python脚本

    csv文件通常存在如下问题: 1. 文件过大(需要进行文件分割)2. 列异常(列不一致,如元数据列为10列,但csv文件有些行是11列,或者4列)本脚本用于解决此问题. #coding=utf-8 ' ...

  9. 用opencsv文件读写CSV文件

    首先明白csv文件长啥样儿: 用excel打开就变成表格了,看不到细节 推荐用其它简单粗暴一点儿的编辑器,比如Notepad++, csv文件内容如下: csv文件默认用逗号分隔各列. 有了基础的了解 ...

随机推荐

  1. Django+Xadmin打造在线教育系统(四)

    完成授课机构的功能 模板继承 在templates目录下,新建base.html,剪切org-list.html内容到里面 编写org-list.html内容 继承base.html,将里面的面包屑和 ...

  2. IDEA修改module的名字

    首先右键module名,选择[Refactor]-[Rename...] 然后选择[Rename module] 只修改这些对于当前开发是没有问题了 但是刚开始把module添加成maven项目的时候 ...

  3. pytorch解决鸢尾花分类

    半年前用numpy写了个鸢尾花分类200行..每一步计算都是手写的  python构建bp神经网络_鸢尾花分类 现在用pytorch简单写一遍,pytorch语法解释请看上一篇pytorch搭建简单网 ...

  4. MT【277】华中科技大学理科实验班选拔之三次方程

    (2015华中科技大学理科实验班选拔)已知三次方程$x^3+ax^2+bx+x=0$有三个实数根.(1)若三个实根为$x_1,x_2,x_3$,且$x_1\le x_2\le x_3,a,b$为常数, ...

  5. Hdoj 2602.Bone Collector 题解

    Problem Description Many years ago , in Teddy's hometown there was a man who was called "Bone C ...

  6. 【转】从此以后谁也别说我不懂LDO了!

    LDO是个很简单的器件,但是我跟客户沟通的过程中,发现客户工程师的技术水平参差不齐,有的工程师只是follow 别人以前的设计,任何原理和设计方法都不懂,希望大家看完这篇文章都能成为LDO 专家. 第 ...

  7. 【洛谷P1024一元三次方程求解】

    题目描述 有形如: ax3 + bx2 + cx1 + dx0 = 0 这样的一个一元三次方程.给出该方程中各项的系数( a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 -100 ...

  8. CF Educational Codeforces Round 57划水记

    因为是unrated于是就叫划水记了,而且本场也就用了1h左右. A.B:划水去了,没做 C:大水题,根据初三课本中圆的知识,可以把角度化成弧长,而这是正多边形,所以又可以化成边数,于是假设读入为a, ...

  9. 团体程序设计天梯赛(CCCC) L3012 水果忍者 上凸或下凹的证明

    团体程序设计天梯赛代码.体现代码技巧,比赛技巧.  https://github.com/congmingyige/cccc_code #include <cstdio> #include ...

  10. PHP生成四角图片

    <?php /** 圆角 $radius = 100; $img = imagecreatetruecolor($radius, $radius); // 创建一个正方形的图像 $bgcolor ...