洛谷P1762 杨辉三角,规律
https://www.luogu.org/problemnew/show/P1762
题意:给定一个正整数n,请输出杨辉三角形前n行的偶数个数对1000003取模后的结果。
由于N <= 1e15,这就暗示我们这是一道需要打表找规律的图。
年轻的花花以为求偶数个数就应当打偶数个数的表,不料这题的规律在于奇数。
所以一张完整的表应当把偶数个数,偶数个数和,奇数个数,奇数个数和,总数全部表示出来。
当行数为2 ^ k时,该行的奇数为2 ^ k个,即全部为奇数,该行的奇数和为3 ^ k 个。
所以当行数为2 ^ k的形式的时候,可以很容易的通过求和公式算出总个数再减去奇数的方式来计算答案。
现在问题要扩展到行数不满足条件的时候
规律就是将行数分为 p = 2 ^ k1 + 2 ^ k2 ....... + 2 ^kn的形式(kn > kn - 1 > .... > k2 > k1)
易得这样的形式唯一,第p行的奇数和就是 1 * (3 ^ kn) + 2 * (3 ^ kn - 1 ) + ... + pow(2,n - 1) * (3 ^ k1)次。
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int read(){int now=;register char c=getchar();for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());return now;}
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = ;
LL N;
int cnt;
LL quick_power(LL a,LL b){
LL ans = ;
while(b){
if(b & ) ans = (ans * a) % mod;
b >>= ;
a = (a * a) % mod;
}
return ans;
}
LL solve(int x){
LL sum = quick_power(,x) * quick_power(,cnt++) % mod;
//cout << x << " " << sum << endl;
return sum;
}
int main(){
Scl(N);
LL ans = ;
cnt = ;
for(int i = ; i >= ; i --){
if(N & (1LL << i)) ans = (ans + solve(i)) % mod;
}
LL sum = (((N + ) % mod) * (N % mod)) / % mod;
sum = ((sum - ans) % mod + mod) % mod;
Prl(sum);
return ;
}
洛谷P1762 杨辉三角,规律的更多相关文章
- 816D.Karen and Test 杨辉三角 规律 组合
LINK 题意:给出n个数,每个数对间进行加或减,结果作为下一层的数,问最后的值为多少 思路:首先我们发现很像杨辉三角,然后考虑如何计算每个数对结果的贡献值,找规律可以发现当数的个数为偶数时,其所在层 ...
- java编写杨辉三角
import java.util.Scanner; /* *计算杨辉三角: * 规律:两边都是1 * 从第三行开始,上一行的前一个元素+与其并排的元素等于下面的元素 * 例如: * 1 * 11 * ...
- 洛谷U14200 Changing 题解 【杨辉三角】
题目描述 有nnn盏灯环形排列,顺时针依次标号为1⋯n1\cdots n1⋯n.初始时刻为000,初始时刻第iii盏灯的亮灭aia_iai给定,000表示灭,111表示亮.下一时刻每盏灯的亮灭取决于 ...
- 杨辉三角 x
杨辉三角是美丽的数学结晶,其结论往往多蕴含自然之美. ——以下内容均摘抄自题解. 例题: 洛谷P1762 偶数 正如这题所示,数据在n<=10^15的范围内则引导我们去寻找空间更节省,速率更高 ...
- 2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?)
2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?) [P2624 HNOI2008]明明的烦恼 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn ...
- HDOJ(HDU) 1799 循环多少次?(另类杨辉三角)
Problem Description 我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分.例如, 如果代码中出现 for(i=1;i<=n;i++) OP ; 那么做了n次 ...
- 基于visual Studio2013解决C语言竞赛题之0509杨辉三角
题目
- 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...
- Java数组的应用:案例:杨辉三角,三维数组,字符串数组
//import java.util.Arrays; //包含Arrays //import java.util.Random; public class HelloWorld { public st ...
随机推荐
- Asp.Net Core 输出 Word
In one of the ASP.NET Core projects we did in the last year, we created an OutputFormatter to provid ...
- 【Tensorflow】Tensorflow入门教程
基本使用 使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使 ...
- php 编译常见错误
1.configure: error: No curses/termcap library found 网上有的说法是:–with-named-curses-libs=/usr/lib/libncur ...
- docker registry v2与harbor的搭建
docker的仓库 1 registry的安装 docker的仓库我们可以使用docker自带的registry,安装起来很简单,但是可能有点使用起来不是很方便.没有图形化. 开始安装 使用镜像加速器 ...
- [Codeforces261D]Maxim and Increasing Subsequence——树状数组+DP
题目链接: Codeforces261D 题目大意:$k$次询问,每次给出一个长度为$n$的序列$b$及$b$中的最大值$maxb$,构造出序列$a$为$t$个序列$b$连接而成,求$a$的最长上升子 ...
- P1601 A+B Problem(高精)
原题链接 https://www.luogu.org/problemnew/show/P1601 这个题提示的很清楚,并非简单的A+B,单纯的long long型也不行(不要被样例所迷惑).因为lo ...
- Treap树 笔记
预备知识:二叉查找树.堆(heap).平衡二叉树(AVL)的基本操作(左旋右旋) 定义: Treap.平衡二叉树.Tree+Heap.树堆. 每个结点两个键值(key.priority). 性质1. ...
- Linux 检查端口gps命令
由于是游戏业务,环境主要是Nginx+Tomcat+Java Program gps脚本环境以及效果图如下: #!/bin/bash function Printf (){ == ];then pri ...
- 【HDU1848】Fibonacci again and again(博弈论)
[HDU1848]Fibonacci again and again(博弈论) 题面 Hdu 你有三堆石子,每堆石子的个数是\(n,m,p\),你每次可以从一堆石子中取走斐波那契数列中一个元素等数量的 ...
- iis express添加虚拟目录
在调试WEB时,还是使用IIS EXPRESS比较方便, 在IIS中,选择网站,右击,添加虚拟目录或者应用程序,就能添加虚拟目录了.. 在IIS EXPRESS中,添加虚拟目录如下 1.右击IIS E ...