Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000 一条路上一共有n个地雷,每次从 i 位置有 p 的概率走向 i+1 位置,有 1-p 的概率走向 i+2 位置,问在这条路上走不被炸死的概率是多大。
用dp[i] = x 表示走到第 i 个位置的概率,那么dp[i] = p * dp[i-1] + (1-p) * dp[i-2].
但是 i 的范围在 1e8 内,所以不能直接遍历。
一开始想错了,以为第 x 位置的地雷只会对后面两个位置产生影响,这种情况是 p = 0.5的特殊情况下的。
假设地雷的位置是x1, x2 可以把 1->x1 之间不踩到地雷和 x1+1 -> x2 之间不踩到地雷看成两个独立事件,然后最后讲每次(1-dp[地雷])的概率相乘就可以了。
然后接下来就是对从 1->x 过程求 dp[x] 概率了,这个过程可以通过矩阵快速幂来加速。
 /*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e5 + ;
const int maxm = 1e5 + ;
const int mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m;
int cas, tol, T; struct Mat {
double mat[][];
void init() {
for(int i=; i<=; i++) {
for(int j=; j<=; j++) {
mat[i][j] = 0.0;
}
}
}
};
int a[]; Mat mmul(Mat A, Mat B) {
Mat ans;
ans.init();
for(int i=; i<=; i++) {
for(int j=; j<=; j++) {
for(int k=; k<=; k++) {
ans.mat[i][j] += A.mat[i][k] * B.mat[k][j];
}
}
}
return ans;
} Mat mpow(Mat A, int b) {
Mat ans;
ans.init();
for(int i=; i<=; i++)
ans.mat[i][i] = 1.0;
while(b) {
if(b & )
ans = mmul(ans, A);
A = mmul(A, A);
b >>= ;
}
return ans;
} int main() {
double p, q;
while(~scanf("%d%lf", &n, &p)) {
mes(a, );
q = 1.0 - p;
int flag = ;
for(int i=; i<=n; i++) {
scanf("%d", &a[i]);
if(a[i] == ) {
flag = ;
}
}
if(flag) {
printf("0.0000000\n");
continue;
}
a[n+] = ;
n++;
sort(a+, a++n);
double ans = 1.0;
Mat A;
for(int i=; i<=n; i++) {
if(a[i] == a[i-]) continue;
int tmp = a[i] - a[i-] + ;
if(tmp == ) {
ans *= 0.0;
} else {
A.mat[][] = p;
A.mat[][] = q;
A.mat[][] = 1.0;
A.mat[][] = 0.0;
A = mpow(A, tmp-);
// for(int i=1; i<=2; i++) {
// for(int j=1; j<=2; j++) {
// printf("%f%c", A.mat[i][j], j==2 ? '\n' : ' ');
// }
// }
ans *= ( - A.mat[][]);
}
}
printf("%.7f\n", ans);
}
return ;
}

Scout YYF I POJ - 3744(概率dp)的更多相关文章

  1. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  2. poj 3744 概率dp 快速幂 注意排序 难度:2

    /* Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5304   Accepted: 1455 De ...

  3. 概率dp(A - Scout YYF I POJ - 3744 )

    题目链接:https://cn.vjudge.net/contest/276241#problem/A 题目大意:首先输入n和p,n代表地雷的个数,p代表走一步的概率,1-p代表走两步的概率,然后问你 ...

  4. Scout YYF I POJ - 3744【矩阵乘法优化求概率】

    题意: 一条路上有 $n$ 个地雷,YYF 从位置 $1$ 出发,走一步的概率为 $p$,走两步的概率是 $(1-p)$.求 YYF 能顺利通过这条路的概率. 数据范围: $1\leq n \leq ...

  5. Scout YYF I POJ - 3744(矩阵优化)

    题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...

  6. poj 3744 概率dp+矩阵快速幂

    题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...

  7. POJ 2096 (概率DP)

    题目链接: http://poj.org/problem?id=2096 题目大意:n种bug,s个子系统.每天随机找一个bug,种类随机,来自系统随机.问找齐n种bug,且每个子系统至少有一个bug ...

  8. POJ 2151 概率DP

    主要的子问题是每一个队伍有一个做出题目的概率,求做出k个题目的概率.简单的简单的组合数DP.想清楚即可. 1: #include <iostream> 2: #include <cs ...

  9. POJ 3701 概率DP

    给定2^n 支足球队进行比赛,n<=7. 队伍两两之间有一个获胜的概率,求每一个队伍赢得最后比赛的概率是多少? 状态其实都是很显然的,一开始觉得这个问题很难啊,不会.dp[i][j] 表示第i支 ...

随机推荐

  1. Java Core - JVM运行时内存管理

    在读正文之前,阅读以下两篇博客学习并理解堆栈.作用域.本地方法的概念. 作用域:https://www.cnblogs.com/AlanLee/p/6627949.html 操作数栈:https:// ...

  2. [转帖]windows7/windows NT介绍

    windows7/windows NT介绍 原文应该是IT168发布的 但是一直没找到 感觉看了之后 明白了很多 技术都是互相融合的 没有严格意义上的对立直说.   Windows 7/Windows ...

  3. [转帖]你云我云•兄弟夜谈会 第三季 企业IT架构

    你云我云•兄弟夜谈会 第三季 企业IT架构 https://www.cnblogs.com/sammyliu/p/10425252.html 你云我云•兄弟夜谈会 第三季 企业IT架构 你云我云•兄弟 ...

  4. Angular 基本指令

    <!DOCTYPE html><html ng-app><head lang="en"> <meta charset="UTF- ...

  5. docker开启加速(第三篇)

    前言:  docker的镜像仓库在国外,下载会很慢,启用阿里云加速. 第一步:cd /etc/docker目录下,打开daemon.json 第二步:修改daemon.json文件,添加阿里云加速: ...

  6. day 7-12 数据库的基本操作和存储引擎

    一. 储备知识 数据库服务器:一台高性能计算机 数据库管理系统:mysql(mssql等),是一个软件 数据库:db1(student_db),是一个文件夹 表:studen_info 是一个文件 记 ...

  7. 【gedit】 显示行号

    打开gedit文本编辑器->Edit(编辑)->preferences(预设)->view(视图)->在Display line numbers前打勾->close

  8. Percona-xtrabackup 使用详解与原理

    现在有个需求需要对使用 innodb 的数据库进行热备.网上查了很多工具皆推荐 Percona-xtrabackup 于是就仔细了解调研一番. 我们可以前往 https://www.percona.c ...

  9. java sort排序原理

    事实上Collections.sort方法底层就是调用的Arrays.sort方法,而Arrays.sort使用了两种排序方法,快速排序和优化的归并排序. 快速排序主要是对那些基本类型数据(int,s ...

  10. JSP从入门到精通

    1. jsp开发环境配置 在windows下配置jsp的开发环境: 假设已经安装好了jdk,下面来配置tomcat 去http://tomcat.apache.org 下载tomcat windows ...