MT【278】二次齐次化
对于$c>0$,当非零实数$a,b$满足$4a^2-2ab+4b^2-c=0,$且使$|2a+b|$最大时,$\dfrac{3}{a}-\dfrac{4}{b}+\dfrac{5}{c}$的最小值为_____

分析:此类题要知道方法是很简单的,重在平时积累,此题是2014年的高考填空压轴题,和2008年华约自招三一题类似.
构造$(2a+b)^2-k(4a^2-2ab+4b^2)=0$,令$\dfrac{a}{b}=t$, 得
$(4-4k)t^2+(4+2k)t+1-4k=0$令$\Delta =0$得$k=0$或$k=\dfrac{8}{5}$,
易知$k=\dfrac{8}{5}$时$(2a+b)^2$有最大值$\dfrac{8}{5}c$,
容易知道取到最大值时$a=\dfrac{3}{2}b,c=10b^2$故$\dfrac{3}{a}-\dfrac{4}{b}+\dfrac{5}{c}=\dfrac{1}{2b^2}-\dfrac{2}{b}\ge-2$
MT【278】二次齐次化的更多相关文章
- MT【180】齐次化+换元
已知实数$a,b$满足$a^2-ab-2b^2=1,$则$a^2+b^2$的取值范围_____ 解答:$\textbf{方法一}$由已知得$(a-2b)(a+b)=1$,设$x=a-2b,y=a+b$ ...
- MT【4】坐标平移后齐次化
简答:通过坐标平移可以将A点移到原点,设BC:mx’+ny’=1,联立坐标变换后的椭圆方程和BC,将$\frac{y}{x}$看成斜率k,得到关于k的一元二次方程,由题意两根之积为-1,可得.
- c#数字图像处理(二)彩色图像灰度化,灰度图像二值化
为加快处理速度,在图像处理算法中,往往需要把彩色图像转换为灰度图像,在灰度图像上得到验证的算法,很容易移植到彩色图像上.24位彩色图像每个像素用3个字节表示,每个字节对应着R.G.B分量的亮度(红.绿 ...
- 《Linux命令行与shell脚本编程大全》第十二章 使用结构化命令
许多程序要就对shell脚本中的命令施加一些逻辑控制流程. 结构化命令允许你改变程序执行的顺序.不一定是依次进行的 12.1 使用if-then语句 如下格式: if command then ...
- 流畅python学习笔记:第十二章:子类化内置类型
子类化内置类型 在python2.2之后,内置类型都可以子类化,但是有一个注意事项:内置类型不会调用用户定义的类覆盖的特殊方法.这个说起来比较绕口,什么意思呢.我们来看下下面的代码: class Do ...
- 二、vue组件化开发(轻松入门vue)
轻松入门vue系列 Vue组件化开发 五.组件化开发 1. 组件注册 组件命名规范 组件注册注意事项 全局组件注册 局部组件注册 2. Vue调试工具下载 3. 组件间数据交互 父组件向子组件传值 p ...
- hdu 2795 线段树(二维问题一维化)
Billboard Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- Skyline 二次实现单体化模型选择查询示例代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.or ...
- MT【173】齐次消元单变量
已知$x\ge0,x^2+(y-2)^2=1,W=\dfrac{3x^2+2\sqrt{3}xy+5y^2}{x^2+y^2}$,求$W$的最值. 提示:$x\ne0$时,设$t=\dfrac{y}{ ...
随机推荐
- Python-面向对象简介
面向对象介绍 学习面向对象过程中会遇到一些名词,我们先解释下 名词解释 类:一个类即是对一类拥有相同属性的对象的抽象.蓝图.原型.模板.在类中定义了这些对象的都具备的属性(variables(data ...
- MySQL优化技巧总结
MySQL优化的几个大方向 ① 硬件优化 ② 对MySQL配置参数进行优化(my.cnf)此优化需要进行压力测试来进行参数调整 ③ SQL语句方面的优化 ④ 表方面的优化 硬件优化 cpu,内存, ...
- 打开指定测试App的指定Activity
那究竟应该如何让appium去自动找到指定的APP和指定的Activity呢?想要打开指定的App,需要知道App的包名,同样想要打开指定Activity也需要知道其名,如何获取? 1.问公司的开发人 ...
- Vue之小入门
Vue之小入门 <div id="app">{{ greeting }}</div> <script> let oDiv = document. ...
- Eclipse lombok java
Stablehttps://projectlombok.org/features/all Lombok介绍及使用方法 - holten - 博客园http://www.cnblogs.com/holt ...
- Oracle SQL优化原则
原文:http://bbs.landingbj.com/t-0-240353-1.html 1.选用适合的 ORACLE 优化器 2.访问 Table 的方式 3.共享SQL语句 共享的语句必须满足三 ...
- React-Native windows环境搭建记录
1.安装jdk,SDK Jdk下载地址:http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk8-downloads-213315 ...
- WSL Windows subsytem linux 的简单学习与使用
1. win10 1709 以上的版本应该都增加上了 ctrl +r 运行 winver 查看版本 2. 添加删除程序 增加 wsl 增加一个功能 3. 打开cmd 输入 bash 即可 4. 可以将 ...
- Spring在web开发中的应用
(1)在 web 项目中要使用 spring 需要导入一个 jar 包: spring-web-4.2.4.jar包 (2)在 web.xml 文件中配置 Listener <listener& ...
- class面向对象-2
hasattr/getattr/setattr/delattr #通过字符串判断/获取/新增/删除对象属性或方法 class att(object): def __init__(self,var): ...