Product and Sum in Category Theory
Even if you are not a functional programmer, the notion of product type should be familiar to you, e.g., Pair<A, B>
in Java is a product type of A
and B
. But the definition in category theory is not that easy to comprehend. Here is how it is defined on Wikipedia:
Let
C
be a category with some objectsX1
andX2
. A product ofX1
andX2
is an objectX
(often denotedX1 × X2
) together with a pair of morphismsπ1 : X → X1
,π2 : X → X2
that satisfy the following universal property: for every objectY
and pair of morphismsf1 : Y → X1
,f2 : Y → X2
there exists a unique morphismf
:Y → X1 × X2
such that the following diagram commutes:
Why is it defined that way and how do we interpret it? Let me translate it into something that Java programmers can understand. The definition actually says, if X1 x X2
is a product type of X1
and X2
with two functions π1 : X -> X1
and π2 : X -> X2
, there must be a unique function f : Y -> X1 × X2
which satisfies the property: for any value y
of type Y
, function f1 : Y -> X1
and a function f2 : Y -> X2
, the equations π1(f(y)) == f1(y)
and π2(f(y)) == f2(y)
must always be true.
In other words, if I define my product type as usual like:
// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2;
public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
}
public X1 getX1() {
return x1;
}
public X2 getX2() {
return x2;
}
}
There must be a unique f
which is constructed by:
// Java
Function<Y, Pair<X1, X2>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y), f2.apply(y));
}
In other words, product type guarantees that if you have a function of type Y -> X1
and a function of type Y -> X2
, you must have a unique function of type Y -> X1 x X2
satisfying the property. The property can be expressed programatically as: for any y
, f1
and f2
, the following test must pass.
// Java
void testProductType(Y y, Function<Y, X1> f1, Function<Y, X2> f2) {
Function<Y, Pair<X1, X2>> f = makeF(f1, f2);
assert(f.apply(y).getX1() == f1.apply(y));
assert(f.apply(y).getX2() == f2.apply(y));
}
So what could be a counterexample? Here is:
// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2;
public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
}
public X1 getX1() {
return 1;
}
public X2 getX2() {
return 2;
}
}
With this wrong definition of product type, you cannot possibly construct such a f
which satisfies the universal property, i.e., there are always some cases which can make the test fail.
If you think it is done, here comes the tricky part, is the type below a product type?
// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2;
public Pair(T x1, U x2) {
this.x1 = x1;
this.x2 = x2;
}
public T getX1() {
return x1 + 1;
}
public T getX2() {
return x2 + 2;
}
}
Intuition may tell you it is not a product type, but by definition of product type in the category theory, it actually is. Why? Because you can define a unique f
satisfying the property:
// Java
Function<Y, Pair<X, Y>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y) - 1, f2.apply(y) - 2);
}
What this means is that, the two product types are equivalent in category theory. This is because category theory defines equivalence by structure, if two things have the same structure, they are considered the same thing.
Then, what about sum type (a.k.a coproduct type)? The definition in category theory is:
Let
C
be a category and letX1
andX2
be objects in that category. An object is called the coproduct of these two objects, writtenX1 ∐ X2
orX1 ⊕ X2
or sometimes simplyX1 + X2
, if there exist morphismsi1 : X1 → X1 ∐ X2
andi2 : X2 → X1 ∐ X2
satisfying a universal property: for any objectY
and morphismsf1 : X1 → Y
andf2 : X2 → Y
, there exists a unique morphismf : X1 ∐ X2 → Y
such thatf1 = f ∘ i1
andf2 = f ∘ i2
. That is, the following diagram commutes:
From program perspective, the definition says, if X1 ∐ X2
is a sum type of X1
and X2
with two functions i1 : X1 -> X1 ∐ X2
and i2 : X2 → X1 ∐ X2
, there must be a unique function f : X1 ∐ X2 -> Y
which satisfies the property: for any value y : Y
, function f1 : X1 -> Y
and function f2 : X2 -> Y
, the equations f(i1(y)) == f1(y)
and f(i2(y)) == f2(y)
must always be true.
If I define sum type as below:
// Java
class Either<X1, X2> {
private final Optional<X1> x1;
private final Optional<X2> x2;
private Either(Optional<X1> x1, Optional<X2> x2) {
this.x1 = x1;
this.x2 = x2;
}
public static Either<X1, X2> left(X1 x1) {
return new Either(Optional.of(x1), Optional.absent());
}
public static Either<X1, X2> right(X2 x2) {
return new Either(Optional.absent(), Optional.of(x2));
}
public Optional<T> getX1() {
return x1;
}
public Optional<U> getX2() {
return x2;
}
}
There must be a unique f
which is constructed by:
// Java
Function<Either<X1, X2>, Y> makeF(Function<X1, Y> f1, Function<X2, Y> f2) {
return (Either<X1, X2> e) -> e.getX1().isPresent() ? f1.apply(e.getX1().get()) : f2.apply(e.getX2().get());
}
In other words, sum type guarantees that if you have a function of type X1 -> Y
and a function of type X2 -> Y
, you must have a unique function of type X1 ∐ X2 -> Y
satisfying the property. The property can be verified programatically as: for any x1
, x2
, f1
, f2
the following tests must pass.
// Java
void testSumType(X1 x1, X2 x2, Function<X1, Y> f1, Function<X2, Y> f2) {
assert(f.apply(Either.left(x1)) == f1.apply(x1));
assert(f.apply(Either.left(x2)) == f2.apply(x2));
}
To sum up, category theory defines product and sum type by requiring them to be able to construct such a function which satisfies a universal property.
Product and Sum in Category Theory的更多相关文章
- Category Theory: 01 One Structured Family of Structures
Category Theory: 01 One Structured Family of Structures 这次看来要放弃了.看了大概三分之一.似乎不能够让注意力集中了.先更新吧. 群的定义 \( ...
- 【leetcode】1281. Subtract the Product and Sum of Digits of an Integer
题目如下: Given an integer number n, return the difference between the product of its digits and the sum ...
- [Leetcode] 5279. Subtract the Product and Sum of Digits of an Integer
class Solution { public int subtractProductAndSum(int n) { int productResult = 1; int sumResult = 0; ...
- Spring学习笔记2——创建Product对象,并在其中注入一个Category对象
第一步:创建Product类.在Product类中有对Category对象的set和get方法 package com.spring.cate; public class Product { priv ...
- Web API开发实例——对产品Product进行增删改查
1.WebApi是什么 ASP.NET Web API 是一种框架,用于轻松构建可以由多种客户端(包括浏览器和移动设备)访问的 HTTP 服务.ASP.NET Web API 是一种用于在 .NET ...
- Haskell语言学习笔记(39)Category
Category class Category cat where id :: cat a a (.) :: cat b c -> cat a b -> cat a c instance ...
- <<Differential Geometry of Curves and Surfaces>>笔记
<Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...
- 对话机器学习大神Yoshua Bengio(下)
对话机器学习大神Yoshua Bengio(下) Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域.他连同Geoff Hinton老先生以及 Yann LeCun ...
- <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes
<Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...
随机推荐
- IDEA中,将项目加入maven管理。
在项目上右键->Add Framework Support Choose Maven 生成pom.xml 在<project>下配置国内仓库 <properties>&l ...
- xp密钥-资源分享
xp-密钥:QC986-27D34-6M3TY-JJXP9-TBGMD ftp-资源地址: ftp://10.10.31.2/?tdsourcetag=s_pctim_aiomsg
- C# 两个datatable中的数据快速比较返回交集或差集[z]
最基本的写法无非是写多层foreach循环,数据量多了,循环的次数是乘积增长的. 这里推荐使用Except()差集.Intersect()交集,具体性能没有进行对比. 如果两个datatable的字段 ...
- 主机WiFi时,vmware ubuntu 桥接上网
1.在vmwared软件主页的编辑->虚拟网络编辑器中,桥接模式,选择桥接至电脑的无线网卡(在主机上查询) 2.虚拟机设置中,选择桥接模式 3.ubuntu 桌面右上方edit connecti ...
- JS判断图片是否加载完成 背景图404 快到碗里来
面对这个问题 我最多做到表面笑嘻嘻 …… 真不知道测试怎么那么…… 啥都能给你测出来 有的没的都能给你测出来 算了算了 谁让本仙女本精灵本可爱温柔大方善解人意呢 …呵呵呵 ————————————正 ...
- ASP.NET Core使用NLog记录日志到Microsoft Sql Server
在之前的文章中介绍了如何在ASP.NET Core使用NLog,本文为您介绍在ASP.NET Core使用NLog记录到Microsoft Sql Server 1.我们需要添加依赖: NLog.We ...
- map和list循环遍历
//map遍历(zmm是实体类) Map<String, zmm> maps = new HashMap<String, zmm>(); //给map存值: maps.put( ...
- go的包下载失败解决方案
包被墙的方案 1 翻啊的墙 2 gopm 3 https://github.com/golang/net 4 使用国内网站打包 5 export GOPROXY=https://goproxy.io
- 20170506计划-----(基于python查询oracle语句)
在日常的工作中,经常接到开发同事查询生产SQL的请求,公司又不允许对开发开放查询SQL的权限,并且查询的堡垒机又很慢,计划做一个可以自动查询SQL的小工具,一周内完成吧. 大概功能实现了,一些涉及敏感 ...
- core里使用log4net
1. nuget 里安装 log4net 2. startup.cs里配置读取配置文件 public static ILoggerRepository repository { get; set; } ...