UVa 1349 - Optimal Bus Route Design(二分图最佳完美匹配)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4095
题意:
给n个点(n≤99)的有向带权图,找若干个有向圈,使得每个点恰好属于一个圈。
要求权和尽量小。注意即使(u,v)和(v,u)都存在,它们的权值也不一定相同。
分析:
每个点恰好属于一个有向圈,意味着每个点都有一个唯一的后继。
反过来,只要每个点都有唯一的后继,每个点一定恰好属于一个圈。
把每个点i拆成Xi和Yi,原图中的有向边u->v对应二分图中的边Xu->Yv,
则题目转化为了这个二分图上的最小权完美匹配问题。
代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std; /// 结点下标从0开始,注意maxn
struct MCMF {
static const int maxn = * + ;
static const int INF = 0x3f3f3f3f;
struct Edge {
int from, to, cap, flow, cost;
}; int n, m;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn]; // 是否在队列中
int d[maxn]; // Bellman-Ford
int p[maxn]; // 上一条弧
int a[maxn]; // 可改进量 void init(int n) {
this->n = n;
for(int i = ; i < n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back((Edge){from, to, cap, , cost});
edges.push_back((Edge){to, from, , , -cost});
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BellmanFord(int s, int t, int& flow, int& cost) {
for(int i = ; i < n; i++) d[i] = INF;
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ; p[s] = ; a[s] = INF;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = ;
for(int i = ; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) {
Q.push(e.to);
inq[e.to] = ;
}
}
}
}
if(d[t] == INF) return false;
//if(flow + a[t] > flow_limit) a[t] = flow_limit - flow;
flow += a[t];
cost += d[t] * a[t];
for(int u = t; u != s; u = edges[p[u]].from) {
edges[p[u]].flow += a[t];
edges[p[u]^].flow -= a[t];
}
return true;
}
// 需要保证初始网络中没有负权圈
pair<int,int> MincostMaxflow(int s, int t) {
int flow = , cost = ;
while(BellmanFord(s, t, flow, cost));
//while(flow < flow_limit && BellmanFord(s, t, flow_limit, flow, cost));
return make_pair(flow, cost);
}
} mm; int main() {
int n;
while(scanf("%d", &n) && n) {
mm.init(n*+);
int start = , finish = n*+;
for(int j, d, i = ; i <= n; i++) {
mm.AddEdge(start, i, , );
mm.AddEdge(i+n, finish, , );
while(true) {
scanf("%d", &j);
if(j == ) break;
scanf("%d", &d);
mm.AddEdge(i, j+n, , d);
}
}
pair<int,int> p = mm.MincostMaxflow(start, finish);
if(p.first < n) printf("N\n");
else printf("%d\n", p.second);
}
return ;
}
UVa 1349 - Optimal Bus Route Design(二分图最佳完美匹配)的更多相关文章
- Uva1349Optimal Bus Route Design(二分图最佳完美匹配)(最小值)
题意: 给定n个点的有向图问,问能不能找到若干个环,让所有点都在环中,且让权值最小,KM算法求最佳完美匹配,只不过是最小值,所以把边权变成负值,输出时将ans取负即可 这道题是在VJ上交的 #incl ...
- UVa 1349 Optimal Bus Route Design (最佳完美匹配)
题意:给定一个有向图,让你找出若干个图,使得每个点恰好属于一个圈,并且总的权和最小. 析:每个点都有唯一的一个圈,也就是说每一点都有唯一的后继,那么我们就可以转换成求一个图的最小权的最佳完全匹配,可以 ...
- UVA 1349 Optimal Bus Route Design (二分图最小权完美匹配)
恰好属于一个圈,那等价与每个点有唯一的前驱和后继,这让人想到了二分图, 把一个点拆开,点的前驱作为S集和点的后继作为T集,然后连边,跑二分图最小权完美匹配. 写的费用流..最大权完美匹配KM算法没看懂 ...
- UVA 1349 Optimal Bus Route Design 最优公交路线(最小费用流,拆点)
题意: 给若干景点,每个景点有若干单向边到达其他景点,要求规划一下公交路线,使得每个景点有车可达,并且每个景点只能有1车经过1次,公车必须走环形回到出发点(出发点走2次).问是否存在这样的线路?若存在 ...
- UVA - 1045 The Great Wall Game(二分图最佳完美匹配)
题目大意:给出棋盘上的N个点的位置.如今问将这些点排成一行或者一列.或者对角线的最小移动步数(每一个点都仅仅能上下左右移动.一次移动一个) 解题思路:暴力+二分图最佳完美匹配 #include < ...
- UVa1349 Optimal Bus Route Design(二分图最佳完美匹配)
UVA - 1349 Optimal Bus Route Design Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...
- UVA - 1349 D - Optimal Bus Route Design
4. D - Optimal Bus Route Design 题意:给出n(n<=100)个点的带权有向图,找出若干个有向圈,每个点恰好属于一个有向圈.要求权和尽量小. 注意即使(u,v)和( ...
- UVA1349 Optimal Bus Route Design 拆点法+最小费用最佳匹配
/** 题目:UVA1349 Optimal Bus Route Design 链接:https://vjudge.net/problem/UVA-1349 题意:lrj入门经典P375 给n个点(n ...
- UVa 11383 少林决胜(二分图最佳完美匹配)
https://vjudge.net/problem/UVA-11383 题意: 给定一个N×N矩阵,每个格子里都有一个正整数W(i,j).你的任务是给每行确定一个整数row(i),每列也确定一个整数 ...
随机推荐
- 用m2eclipse创建Maven项目时报错
Could not calculate build plan: Failure to transfer org.apache.maven.plugins:maven-surefire-plugin:p ...
- ASP.NET MVC4 新手入门教程之二 ---2.添加控制器
MVC 代表 模型-视图-控制器.MVC 是一个模式用于开发应用程序是很好的架构. 可检验性和易于维护.基于 MVC 的应用程序包含: Models: 类表示应用程序的数据并使用验证逻辑以执行这些数据 ...
- 2017年11月30日 C#TreeNode递归&邮箱验证&新用户窗体
TreeNode递归 递归:自己调用自己一层一层的把数据找出来 TreeNode:可以创建多个节点 private void button1_Click(object sender, EventArg ...
- https如何工作
一.http 网络协议基于分层架构构建了七层模型,是ISO建立的用于计算机或者通信系统之间的互联的标准体系.下图展示了其中的五层: http被称为超文本传输协议,是互联网上应用最为广泛的一种网络协议, ...
- explode 把字符串打散为数组
// 显示的字段列表 $smarty->assign('field_show', explode(',',$list_name)); explode(separator,string,limit ...
- Rabbit的事务
加入事务的方法: txSelect() txCommit() txRollback() 生产者: package com.kf.queueDemo.transactions; import jav ...
- 简单的CRUD(二)
一.重构简单的CRUD 1.JDBC工具类 1.因为在crud中都包含一些相同的代码所以可以提取出来,抽取代码重构为工具类. 2.将工具类设置为static静态类,方便调用,不需要new对象. pub ...
- Mysql根据经纬度筛选数据
创建位置表,并且插入测试数据 /* Navicat MySQL Data Transfer Source Server : localhost Source S ...
- 申请微信小程序步骤
一.注册 注册网址:https://mp.weixin.qq.com/ 选择账号类型:选择 小程序 注册账号 填写邮箱密码并激活:未注册过公众平台.开放平台.企业号.未绑定个人号的邮箱. 填写主体信息 ...
- html发展史简介(摘抄)
1993年,IETF,Internet工程任务组(Internet Engineering Task Force)的简写.IETF又叫互联网工程任务组,成立于1985年底,是全球互联网最具权威的技术标 ...