题面

Loj

题解

普通的暴力是直接枚举改或者不改,最后在判断最后对哪些点有贡献。

而这种方法是很难优化的。所以考虑在排序之后线性处理。首先先假设没有重复的元素

struct Node { int poi, id; } a[N];
bool operator < (const Node &a, const Node &b) { return a.poi < b.poi; }
bool operator < (const Node &a, const int &b) { return a.poi < b; }
bool operator < (const int &a, const Node &b) { return a < b.poi; } int main() {
read(n);
for(int i = 1; i <= n; ++i) read(a[i].poi), a[i].id = i;
sort(a + 1, a + n + 1);
}

对于一个点,我们同样是枚举它改或者不改,但是,接着我们来判断哪些点的变化可以对这个点产生贡献,


决策1:不改

不改的话,那么这个元素后面的元素不管变还是不变都可以产生贡献,假设当前处理到$i$,则其后面有$n-i$个元素。

接着考虑前面的元素,前面的元素改变可以对它产生贡献当且仅当它小于$a_i/2$。这里可以使用二分查找。假设一共有$site$个元素满足上面这个条件。

则这个决策所产生的贡献为:$C_{n-i+site}^k$


决策2:改

当这个元素改的时候,怎么保证它的$rank$不变呢?那么就要保证区间$[a_i,2a_i]$这个区间内的所有数字都要变。同样可以二分来确定这个区间内有多少个元素。假设右界为$tmp$,则有$tot=tmp-i+1$个元素是必须要变的

则这个决策所产生的贡献为:$C_{n-tot}^{k-tot}$


重复的元素

之前的所有决策都是在元素不重复的情况下计算的贡献。那么当元素重复时,怎么计算呢?假设现在同一个元素已经出现了$cf$次。

考虑不改的决策,由于$rank$的含义是大于等于它的数不变,所以这个决策的贡献变为:$C_{n-i+site+cf-1}^k$

接着考虑改变的决策,同样,根据$rank$的定义,这些重复的数字也需要改变。所以$tot$变为:

$$

tot=tmp-i+1+cf-1=tmp-i+cf

$$


接着还有一些细节,比如对于$0$的特判(直接就是$C(n,k)$)之类的

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::lower_bound;
using std::upper_bound;
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 1e5 + 10, P = 998244353;
int n, k, ret[N], fac[N], inv[N];
struct Node { int poi, id; } a[N];
bool operator < (const Node &a, const Node &b) { return a.poi < b.poi; }
bool operator < (const Node &a, const int &b) { return a.poi < b; }
bool operator < (const int &a, const Node &b) { return a < b.poi; }
inline void add(int &x) { ++x; if(x == P) x = 0; } int find(double val, int site) {
int l = 1, r = site - 1, ret = 0;
while(l <= r) {
int mid = (l + r) >> 1;
if(1. * a[mid].poi < val) ret = mid, l = mid + 1;
else r = mid - 1;
} return ret;
} int C(int n, int m) {
if(n < m) return 0;
return (int)(1ll * (1ll * fac[n] * inv[m] % P) * inv[n - m] % P);
} int qpow(int a, int b) {
int ret = 1;
for(; b; b >>= 1, a = 1ll * a * a % P) if(b & 1) ret = 1ll * ret * a % P;
return ret;
} int main () {
read(n), read(k), fac[0] = inv[0] = 1;
for(int i = 1; i <= n; ++i) fac[i] = 1ll * fac[i - 1] * i % P;
inv[n] = qpow(fac[n], P - 2);
for(int i = n; i >= 1; --i) inv[i - 1] = 1ll * inv[i] * i % P;
for(int i = 1; i <= n; ++i) read(a[i].poi), a[i].id = i;
sort(a + 1, a + n + 1);
for(int i = 1, cf = 0; i <= n; ++i) {
if(a[i].poi == 0) { ret[a[i].id] = C(n, k); continue; }
int site = find(1. * a[i].poi / 2., i);
if(a[i].poi == a[i - 1].poi) ++cf;
else cf = 1;
(ret[a[i].id] += C(site + n - i + cf - 1, k)) %= P;//改的决策
int tmp = lower_bound(a + i + 1, a + n + 1, a[i].poi * 2) - a - 1;
if(tmp != -1) {
int tot = tmp - i + cf;
if(k >= tot) (ret[a[i].id] += C(n - tot, k - tot)) %= P;
}//不改的决策
}
for(int i = 1; i <= n; ++i) printf("%d\n", ret[i]);
return 0;
}

Loj#6432「PKUSC2018」真实排名(二分查找+组合数)的更多相关文章

  1. LOJ #6432. 「PKUSC2018」真实排名(组合数)

    题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...

  2. Loj 6432. 「PKUSC2018」真实排名 (组合数)

    题面 Loj 题解 枚举每一个点 分两种情况 翻倍or不翻倍 \(1.\)如果这个点\(i\)翻倍, 要保持排名不变,哪些必须翻倍,哪些可以翻倍? 必须翻倍: \(a[i] \leq a[x] < ...

  3. LOJ 6432 「PKUSC2018」真实排名——水题

    题目:https://loj.ac/problem/6432 如果不选自己,设自己的值是 x ,需要让 “ a<x && 2*a>=x ” 的非 x 的值不被选:如果选自己 ...

  4. LOJ #6432. 「PKUSC2018」真实排名

    题目在这里...... 对于这道题,现场我写炸了......谁跟我说组合数O(n)的求是最快的?(~!@#¥¥%……& #include <cstdio> #include < ...

  5. 【LOJ】#6432. 「PKUSC2018」真实排名

    题解 简单分析一下,如果这个选手成绩是0,直接输出\(\binom{n}{k}\) 如果这个选手的成绩没有被翻倍,那么找到大于等于它的数(除了它自己)有a个,翻倍后不大于它的数有b个,那么就从这\(a ...

  6. #6432. 「PKUSC2018」真实排名(组合数学)

    题面 传送门 题解 这数据范围--这输出大小--这模数--太有迷惑性了-- 首先对于\(0\)来说,不管怎么选它们的排名都不会变,这个先特判掉 对于一个\(a_i\)来说,如果它不选,那么所有大于等于 ...

  7. 「PKUSC2018」真实排名(排列组合,数学)

    前言 为什么随机跳题会跳到这种题目啊? Solution 我们发现可以把这个东西分情况讨论: 1.这个点没有加倍 这一段相同的可以看成一个点,然后后面的都可以. 这一段看成一个点,然后前面的不能对他造 ...

  8. 「PKUSC2018」真实排名(组合)

    一道不错的组合数问题! 分两类讨论: 1.\(a_i\) 没有翻倍,那些 \(\geq a_i\) 和 \(a_j\times 2<a_i\) 的数就没有影响了.设 \(kth\) 为 \(a_ ...

  9. 「PKUSC2018」真实排名

    题面 题解 因为操作为将一些数字翻倍, 所以对于一个数\(x\), 能影响它的排名的的只有满足\(2y\geq x\)或\(2x>y\)的\(y\) 将选手的成绩排序,然后考虑当前点的方案 1. ...

随机推荐

  1. ReaderWriterLockSlim 类

    今天在看Nop源码时,PluginManager中用到了ReaderWriterLockSlim类,于是简单做个笔记. ReaderWriterLockSlim 表示用于管理资源访问的锁定状态,可实现 ...

  2. 【Foreign】不等式 [数论]

    不等式 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小z热衷于数学. 今天数学课的内容是解不等式:L<=S*x<=R .小z心 ...

  3. bzoj 2276: [Poi2011]Temperature——单调队列

    Description 某国进行了连续n天的温度测量,测量存在误差,测量结果是第i天温度在[l_i,r_i]范围内. 求最长的连续的一段,满足该段内可能温度不降 第一行n 下面n行,每行l_i,r_i ...

  4. 【NOIP】提高组2005 过河

    [算法]状态压缩型DP [题解] Q=tx+(t-1)y 对于Q≥t(t-1),x,y一定有解. 所以当两石子间距离long>t(t-1)时,令long=t(t-1),重新构造数组即可. [注意 ...

  5. mouseover/mouseenter/mouseout/mouseleave的区别

    mouseover:鼠标指针穿过被选元素或其子元素,均会触发事件 mouseenter:鼠标指针穿过被选元素时才触发事件 mouseout:鼠标指针离开被选元素或其子元素则触发事件 mouseleav ...

  6. Struts2+Hibernate实现图书管理系统

    效果图 部分代码 Books.java package entity; import java.util.Date; public class Books { //书籍编号 private Strin ...

  7. Java回收方法区中回收的类

    回收的类必须满足下面三个条件才能算是“无用的类” 1.该类所有的实例都已经被回收,也就是说Java堆中不存在该类的任何实例: 2.加载该类的ClassLoader已经被回收: 3.该类对应的java. ...

  8. 【swupdate文档 一】嵌入式系统的软件管理

    嵌入式系统的软件管理 嵌入式系统变得越来越复杂, 它们的软件也反映了这种复杂性的增加. 为了支持新的特性和修复,很有必要让嵌入式系统上的软件 能够以绝对可靠的方式更新. 在基于linux的系统上,我们 ...

  9. C++学习之路(四):线程安全的单例模式

    (一)简单介绍 单例模式分为两种类型:懒汉模式和饿汉模式. 懒汉模式:在实际类对象被调用时才会产生一个新的类实例,并在之后返回这个实例.多线程环境下,多线程可能会同时调用接口函数创建新的实例,为了防止 ...

  10. in_device结构和in_ifaddr结构

    /* ip配置块 */ struct in_device { /* 二层设备 */ struct net_device *dev; /* 引用计数 */ atomic_t refcnt; /* 是否正 ...