Loj#6432「PKUSC2018」真实排名(二分查找+组合数)
题面
题解
普通的暴力是直接枚举改或者不改,最后在判断最后对哪些点有贡献。
而这种方法是很难优化的。所以考虑在排序之后线性处理。首先先假设没有重复的元素
struct Node { int poi, id; } a[N];
bool operator < (const Node &a, const Node &b) { return a.poi < b.poi; }
bool operator < (const Node &a, const int &b) { return a.poi < b; }
bool operator < (const int &a, const Node &b) { return a < b.poi; }
int main() {
read(n);
for(int i = 1; i <= n; ++i) read(a[i].poi), a[i].id = i;
sort(a + 1, a + n + 1);
}
对于一个点,我们同样是枚举它改或者不改,但是,接着我们来判断哪些点的变化可以对这个点产生贡献,
决策1:不改
不改的话,那么这个元素后面的元素不管变还是不变都可以产生贡献,假设当前处理到$i$,则其后面有$n-i$个元素。
接着考虑前面的元素,前面的元素改变可以对它产生贡献当且仅当它小于$a_i/2$。这里可以使用二分查找。假设一共有$site$个元素满足上面这个条件。
则这个决策所产生的贡献为:$C_{n-i+site}^k$
决策2:改
当这个元素改的时候,怎么保证它的$rank$不变呢?那么就要保证区间$[a_i,2a_i]$这个区间内的所有数字都要变。同样可以二分来确定这个区间内有多少个元素。假设右界为$tmp$,则有$tot=tmp-i+1$个元素是必须要变的
则这个决策所产生的贡献为:$C_{n-tot}^{k-tot}$
重复的元素
之前的所有决策都是在元素不重复的情况下计算的贡献。那么当元素重复时,怎么计算呢?假设现在同一个元素已经出现了$cf$次。
考虑不改的决策,由于$rank$的含义是大于等于它的数不变,所以这个决策的贡献变为:$C_{n-i+site+cf-1}^k$
接着考虑改变的决策,同样,根据$rank$的定义,这些重复的数字也需要改变。所以$tot$变为:
$$
tot=tmp-i+1+cf-1=tmp-i+cf
$$
接着还有一些细节,比如对于$0$的特判(直接就是$C(n,k)$)之类的
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::lower_bound;
using std::upper_bound;
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 1e5 + 10, P = 998244353;
int n, k, ret[N], fac[N], inv[N];
struct Node { int poi, id; } a[N];
bool operator < (const Node &a, const Node &b) { return a.poi < b.poi; }
bool operator < (const Node &a, const int &b) { return a.poi < b; }
bool operator < (const int &a, const Node &b) { return a < b.poi; }
inline void add(int &x) { ++x; if(x == P) x = 0; }
int find(double val, int site) {
int l = 1, r = site - 1, ret = 0;
while(l <= r) {
int mid = (l + r) >> 1;
if(1. * a[mid].poi < val) ret = mid, l = mid + 1;
else r = mid - 1;
} return ret;
}
int C(int n, int m) {
if(n < m) return 0;
return (int)(1ll * (1ll * fac[n] * inv[m] % P) * inv[n - m] % P);
}
int qpow(int a, int b) {
int ret = 1;
for(; b; b >>= 1, a = 1ll * a * a % P) if(b & 1) ret = 1ll * ret * a % P;
return ret;
}
int main () {
read(n), read(k), fac[0] = inv[0] = 1;
for(int i = 1; i <= n; ++i) fac[i] = 1ll * fac[i - 1] * i % P;
inv[n] = qpow(fac[n], P - 2);
for(int i = n; i >= 1; --i) inv[i - 1] = 1ll * inv[i] * i % P;
for(int i = 1; i <= n; ++i) read(a[i].poi), a[i].id = i;
sort(a + 1, a + n + 1);
for(int i = 1, cf = 0; i <= n; ++i) {
if(a[i].poi == 0) { ret[a[i].id] = C(n, k); continue; }
int site = find(1. * a[i].poi / 2., i);
if(a[i].poi == a[i - 1].poi) ++cf;
else cf = 1;
(ret[a[i].id] += C(site + n - i + cf - 1, k)) %= P;//改的决策
int tmp = lower_bound(a + i + 1, a + n + 1, a[i].poi * 2) - a - 1;
if(tmp != -1) {
int tot = tmp - i + cf;
if(k >= tot) (ret[a[i].id] += C(n - tot, k - tot)) %= P;
}//不改的决策
}
for(int i = 1; i <= n; ++i) printf("%d\n", ret[i]);
return 0;
}
Loj#6432「PKUSC2018」真实排名(二分查找+组合数)的更多相关文章
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
- Loj 6432. 「PKUSC2018」真实排名 (组合数)
题面 Loj 题解 枚举每一个点 分两种情况 翻倍or不翻倍 \(1.\)如果这个点\(i\)翻倍, 要保持排名不变,哪些必须翻倍,哪些可以翻倍? 必须翻倍: \(a[i] \leq a[x] < ...
- LOJ 6432 「PKUSC2018」真实排名——水题
题目:https://loj.ac/problem/6432 如果不选自己,设自己的值是 x ,需要让 “ a<x && 2*a>=x ” 的非 x 的值不被选:如果选自己 ...
- LOJ #6432. 「PKUSC2018」真实排名
题目在这里...... 对于这道题,现场我写炸了......谁跟我说组合数O(n)的求是最快的?(~!@#¥¥%……& #include <cstdio> #include < ...
- 【LOJ】#6432. 「PKUSC2018」真实排名
题解 简单分析一下,如果这个选手成绩是0,直接输出\(\binom{n}{k}\) 如果这个选手的成绩没有被翻倍,那么找到大于等于它的数(除了它自己)有a个,翻倍后不大于它的数有b个,那么就从这\(a ...
- #6432. 「PKUSC2018」真实排名(组合数学)
题面 传送门 题解 这数据范围--这输出大小--这模数--太有迷惑性了-- 首先对于\(0\)来说,不管怎么选它们的排名都不会变,这个先特判掉 对于一个\(a_i\)来说,如果它不选,那么所有大于等于 ...
- 「PKUSC2018」真实排名(排列组合,数学)
前言 为什么随机跳题会跳到这种题目啊? Solution 我们发现可以把这个东西分情况讨论: 1.这个点没有加倍 这一段相同的可以看成一个点,然后后面的都可以. 这一段看成一个点,然后前面的不能对他造 ...
- 「PKUSC2018」真实排名(组合)
一道不错的组合数问题! 分两类讨论: 1.\(a_i\) 没有翻倍,那些 \(\geq a_i\) 和 \(a_j\times 2<a_i\) 的数就没有影响了.设 \(kth\) 为 \(a_ ...
- 「PKUSC2018」真实排名
题面 题解 因为操作为将一些数字翻倍, 所以对于一个数\(x\), 能影响它的排名的的只有满足\(2y\geq x\)或\(2x>y\)的\(y\) 将选手的成绩排序,然后考虑当前点的方案 1. ...
随机推荐
- C11内存管理之道:智能指针
1.shared_ptr共享智能指针 std::shared_ptr使用引用计数,每个shared_ptr的拷贝都指向相同的内存,在最后一个shared_ptr析构的时候,内存才会释放. 1.1 基本 ...
- Android项目分包---总结-------直接使用
注: 本文是从该文摘抄而来的.简单的说,就是阅读了该文,然后,再自己复述,复制形成该文. 1.罗列Android项目的分包规则 微盘使用分包规则 如下: 1).第一层com.sin ...
- 【Foreign】Bumb [模拟退火]
Bumb Time Limit: 20 Sec Memory Limit: 512 MB Description Input Output Sample Input 4 1 5 1 4 Sample ...
- 如何设计一个优雅健壮的Android WebView?(上)
转:如何设计一个优雅健壮的Android WebView?(上) 前言 Android应用层的开发有几大模块,其中WebView是最重要的模块之一.网上能够搜索到的WebView资料可谓寥寥,Gith ...
- 如何入门 Python 爬虫?
作者:谢科 来源:知乎链接:https://www.zhihu.com/question/20899988/answer/24923424 著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...
- hdu 3371(prim算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3371 Connect the Cities Time Limit: 2000/1000 MS (Jav ...
- poj 2387 Til the Cows Come Home(dijkstra算法)
题目链接:http://poj.org/problem?id=2387 题目大意:起点一定是1,终点给出,然后求出1到所给点的最短路径. 注意的是先输入边,在输入的顶点数,不要弄反哦~~~ #incl ...
- javascript中break和continue
1.break break语句会立即退出循环,强制执行循环后面的语句 var num = 0; for(var i=1;i<10;i++){ if(i%5 == 0){ break; } num ...
- Python模块学习 - Argparse
argparse模块 在Python中,argparse模块是标准库中用来解析命令行参数的模块,用来替代已经过时的optparse模块.argparse模块能够根据程序中的定义从sys.argv中解析 ...
- Python3 Socket和SocketServer 网络编程
socket只能实现同时一个服务和一个客户端实现交互,socketserver可以实现多个客户端同时和服务端交互 1.利用Socket编写简单的同一个端口容许多次会话的小案例: 服务端: #!/usr ...