BZOJ-5424: 烧桥计划(单调队列)
BZOJ-5424: 烧桥计划(单调队列)
题解:
先考虑最暴力的\(dp\):设\(f[k][i]\)表示搞掉第\(1\sim i\)段,烧了\(k\)段的最小花费,设\(calc(x,y)=sum[x\sim y]\le M?0:sum[x\sim y]\),可以列出转移方程如下
\]
这样时间复杂度是\(O(n^3)\)的,十分爆炸
考虑优化
首先发现题目中给出的\(1000 \le a[i]\le 2000\)。仔细想想,这表明\(k\)值最大不会太大
设最坏情况下取了\(k\),则此时一定是满足\(k*(k+1)/2*1000\le n*2000\)的
(就是说不是你把\(n\)段桥都断了也比\(k\)段优)
这样算下来\(n\)最大的时候\(k\)也就是\(600\)的样子,\(O(n*k)\)就可以过了
但现在时间复杂度还是\(O(n^2k)\)的,考虑对于每个\(k\)的每个\(i\),如何快速计算此时的\(f[k][i]\)
这个时候就可以用单调队列优化了。
设当前是\(f[k][i]\),题目中\(M\)的限制(就是那个\(calc(x,y)\))就相当于把\(1\sim i\)段分成了两部分:
前半部分要计算中间的\(sum[x\sim y]\),后半部分不用
那么对于前半部分记一个最小值,后半部分维护递增的单调队列,\(dp\)时取两个最小的那个就可以做到\(O(1)\)转移了
细节不少,刚开始写感觉很迷,写着写着也就想明白了吧
注意\(k\)是没有单调性的,一定从\(1\)到\(T\)全枚举一遍
和\(sxz\)一起卡了波时间,惊奇地发现\(k\)最大居然只有\(152\)
(别问为什么这么准,二分试出来的)
代码:
#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define qmax(x,y) (x=max(x,y))
#define qmin(x,y) (x=min(x,y))
#define mp(x,y) make_pair(x,y)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
inline int read(){
int ans=0,fh=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
ans=ans*10+ch-'0',ch=getchar();
return ans*fh;
}
const int maxn=1e5+100;
int n,m,mx,q[maxn],p[maxn],l,r,a[maxn],f[2][maxn];
int tot,mn,sum[maxn],Ans=0x7fffffff;
int main(){
// freopen("nh.in","r",stdin);
// freopen("zhy.out","w",stdout);
n=read(),m=read();
for(int i=1;i<=n;i++) a[i]=read();a[++n]=0;
for(int i=1;i<=n;i++) sum[i]=a[i]+sum[i-1];
int k=0,o=0,lc;
memset(f,0x3f,sizeof(f));
f[0][0]=f[1][0]=0;
int T=min(152,(int)sqrt(n*4));
while(T--){
l=1,r=1,k++,tot=0,mn=0,lc=0;
o^=1,q[1]=p[1]=0;
for(int i=1;i<=n;i++){
int now=0x7fffffff;
while(l<=r&&sum[i-1]-sum[q[l]]>m) l++;
while(1){
if(sum[i-1]-sum[lc]<=m) break;
qmin(mn,f[o^1][lc]+sum[i-1]-sum[lc]-tot);
lc++;
}
if(l<=r) qmin(now,p[l]);
qmin(now,mn+tot);
f[o][i]=(now+=k*a[i]);
while(l<=r&&p[r]>=f[o^1][i]) r--;
p[++r]=f[o^1][i],q[r]=i;
tot+=a[i];
}
qmin(Ans,f[o][n]);
}
printf("%d\n",Ans);
return 0;
}
BZOJ-5424: 烧桥计划(单调队列)的更多相关文章
- BZOJ 5424: 烧桥计划
BZOJ 5424: 烧桥计划 目前暂居rk1QAQ 首先,设\(f[i][k]\)为前i个点中,选了第i个点,总共选了k个点的答案.那么就有: \[f[i][k]=min_{j<i}\{f[j ...
- BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP
BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...
- BZOJ 1047 理想的正方形(单调队列)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1047 题意:给出一个n*m的矩阵.在所有K*K的子矩阵中,最大最小差值最小的是多少? 思 ...
- bzoj 3831 Little Bird (单调队列优化dp)
/*先贴个n*n的*/ #include<iostream> #include<cstdio> #include<cstring> #define maxn 100 ...
- BZOJ 1499 NOI2005 瑰丽华尔兹 单调队列
题目大意:给定一个m*n的地图,一些点有障碍物,钢琴初始在一个点,每一个时间段能够选择向给定的方向移动一段距离,求最长路径长 朴素DP的话,我们有T个时间段,每一个时间段有m*n个点,n个时间,一定会 ...
- BZOJ 1012: [JSOI2008]最大数maxnumber 单调队列/线段树/树状数组/乱搞
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 4750 Solved: 2145[Submi ...
- BZOJ 1791 岛屿(环套树+单调队列DP)
题目实际上是求环套树森林中每个环套树的直径. 对于环套树的直径,可以先找到这个环套树上面的环.然后把环上的每一点都到达的外向树上的最远距离作为这个点的权值. 那么直径一定就是从环上的某个点开始,某个点 ...
- bzoj 3126: [Usaco2013 Open]Photo——单调队列优化dp
Description 给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点 Input * Line 1: Two integers N and M. * Lines 2..M+ ...
- bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...
随机推荐
- HTML、DOM和JS的了解
1.HTML.JS.以及DOM的关系的关系说明 关于HTML.JS.以及DOM的关系一直很迷惑,虽然一直听人说,但并未理解. 偶然间,忽然懂了这三者之间的关系. 举例吧: HTML就是最终的页面,是一 ...
- 动态代理:JDK原生动态代理(Java Proxy)和CGLIB动态代理原理+附静态态代理
本文只是对原文的梳理总结,以及自行理解.自己总结的比较简单,而且不深入,不如直接看原文.不过自己梳理一遍更有助于理解. 详细可参考原文:http://www.cnblogs.com/Carpenter ...
- Pandas 删除指定列中为NaN的行
定位要删除的行 需求:删除指定列中NaN所在行. 如下图,’open‘ 列中有一行为NaN,定位到它,然后删除. 定位: df[np.isnan(df['open'])].index # 这样即可定位 ...
- pandas 报错:【sys:1: DtypeWarning: Columns (15) have mixed types. Specify dtype option on import or set low_memory=False.】
错误原因 报错提示:“sys:1: DtypeWarning: Columns (15) have mixed types. Specify dtype option on import or set ...
- 前端html/css/script基础
1. 基础模板 <!DOCTYPE html> <html> <head> <meta charert="utf-8" /> < ...
- 【我的Android进阶之旅】如何去除ListView中Header View、Footer View中的分割线
最近的项目中给ListView 加入了一个Header View之后,发现Header View的下方也有了分割线,很难看,UI要求将Header View的分割器去掉,好吧.现在就来说一说如何如何去 ...
- 手势识别:GestureDetector
当用户触摸屏幕的时候,会产生许多手势,例如down,up,scroll,filing等等,我们知道View类有个View.OnTouchListener接口,通过重写他的onTouch(View v, ...
- mysql忽略一些错误代码
模拟的故障,在从库中新建一个库,然后主库新建一个与从库相同名字的库,然后进入下面的show Mysql从库复制故障解决 当show slave status:报错 slave_io_running:y ...
- springmvc map
/** * 目标方法可以添加 Map 类型(实际上也可以是 Model 类型或 ModelMap 类型)的参数. * @param map * @return */ @RequestMapping(& ...
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) D. Artsem and Saunders
地址:http://codeforces.com/contest/765/problem/D 题目: D. Artsem and Saunders time limit per test 2 seco ...