BZOJ-5424: 烧桥计划(单调队列)
BZOJ-5424: 烧桥计划(单调队列)
题解:
先考虑最暴力的\(dp\):设\(f[k][i]\)表示搞掉第\(1\sim i\)段,烧了\(k\)段的最小花费,设\(calc(x,y)=sum[x\sim y]\le M?0:sum[x\sim y]\),可以列出转移方程如下
\]
这样时间复杂度是\(O(n^3)\)的,十分爆炸
考虑优化
首先发现题目中给出的\(1000 \le a[i]\le 2000\)。仔细想想,这表明\(k\)值最大不会太大
设最坏情况下取了\(k\),则此时一定是满足\(k*(k+1)/2*1000\le n*2000\)的
(就是说不是你把\(n\)段桥都断了也比\(k\)段优)
这样算下来\(n\)最大的时候\(k\)也就是\(600\)的样子,\(O(n*k)\)就可以过了
但现在时间复杂度还是\(O(n^2k)\)的,考虑对于每个\(k\)的每个\(i\),如何快速计算此时的\(f[k][i]\)
这个时候就可以用单调队列优化了。
设当前是\(f[k][i]\),题目中\(M\)的限制(就是那个\(calc(x,y)\))就相当于把\(1\sim i\)段分成了两部分:
前半部分要计算中间的\(sum[x\sim y]\),后半部分不用
那么对于前半部分记一个最小值,后半部分维护递增的单调队列,\(dp\)时取两个最小的那个就可以做到\(O(1)\)转移了
细节不少,刚开始写感觉很迷,写着写着也就想明白了吧
注意\(k\)是没有单调性的,一定从\(1\)到\(T\)全枚举一遍
和\(sxz\)一起卡了波时间,惊奇地发现\(k\)最大居然只有\(152\)
(别问为什么这么准,二分试出来的)
代码:
#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define qmax(x,y) (x=max(x,y))
#define qmin(x,y) (x=min(x,y))
#define mp(x,y) make_pair(x,y)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
inline int read(){
int ans=0,fh=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
ans=ans*10+ch-'0',ch=getchar();
return ans*fh;
}
const int maxn=1e5+100;
int n,m,mx,q[maxn],p[maxn],l,r,a[maxn],f[2][maxn];
int tot,mn,sum[maxn],Ans=0x7fffffff;
int main(){
// freopen("nh.in","r",stdin);
// freopen("zhy.out","w",stdout);
n=read(),m=read();
for(int i=1;i<=n;i++) a[i]=read();a[++n]=0;
for(int i=1;i<=n;i++) sum[i]=a[i]+sum[i-1];
int k=0,o=0,lc;
memset(f,0x3f,sizeof(f));
f[0][0]=f[1][0]=0;
int T=min(152,(int)sqrt(n*4));
while(T--){
l=1,r=1,k++,tot=0,mn=0,lc=0;
o^=1,q[1]=p[1]=0;
for(int i=1;i<=n;i++){
int now=0x7fffffff;
while(l<=r&&sum[i-1]-sum[q[l]]>m) l++;
while(1){
if(sum[i-1]-sum[lc]<=m) break;
qmin(mn,f[o^1][lc]+sum[i-1]-sum[lc]-tot);
lc++;
}
if(l<=r) qmin(now,p[l]);
qmin(now,mn+tot);
f[o][i]=(now+=k*a[i]);
while(l<=r&&p[r]>=f[o^1][i]) r--;
p[++r]=f[o^1][i],q[r]=i;
tot+=a[i];
}
qmin(Ans,f[o][n]);
}
printf("%d\n",Ans);
return 0;
}
BZOJ-5424: 烧桥计划(单调队列)的更多相关文章
- BZOJ 5424: 烧桥计划
BZOJ 5424: 烧桥计划 目前暂居rk1QAQ 首先,设\(f[i][k]\)为前i个点中,选了第i个点,总共选了k个点的答案.那么就有: \[f[i][k]=min_{j<i}\{f[j ...
- BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP
BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...
- BZOJ 1047 理想的正方形(单调队列)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1047 题意:给出一个n*m的矩阵.在所有K*K的子矩阵中,最大最小差值最小的是多少? 思 ...
- bzoj 3831 Little Bird (单调队列优化dp)
/*先贴个n*n的*/ #include<iostream> #include<cstdio> #include<cstring> #define maxn 100 ...
- BZOJ 1499 NOI2005 瑰丽华尔兹 单调队列
题目大意:给定一个m*n的地图,一些点有障碍物,钢琴初始在一个点,每一个时间段能够选择向给定的方向移动一段距离,求最长路径长 朴素DP的话,我们有T个时间段,每一个时间段有m*n个点,n个时间,一定会 ...
- BZOJ 1012: [JSOI2008]最大数maxnumber 单调队列/线段树/树状数组/乱搞
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 4750 Solved: 2145[Submi ...
- BZOJ 1791 岛屿(环套树+单调队列DP)
题目实际上是求环套树森林中每个环套树的直径. 对于环套树的直径,可以先找到这个环套树上面的环.然后把环上的每一点都到达的外向树上的最远距离作为这个点的权值. 那么直径一定就是从环上的某个点开始,某个点 ...
- bzoj 3126: [Usaco2013 Open]Photo——单调队列优化dp
Description 给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点 Input * Line 1: Two integers N and M. * Lines 2..M+ ...
- bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...
随机推荐
- IIS部署ASP.NET MVC (4.0)网站出现的错误
(1)无法读取配置节“system.web.extensions”,因为它缺少节声明 在IIS中,在基本设置中,将程序池选择为ASP.NET 4.0即OK! (2)由于 Web 服务器上的“ISAPI ...
- JZOJ.5275【NOIP2017模拟8.14】水管
Description
- 160725、Java Map按键排序和按值排序
按键排序(sort by key) jdk内置的Java.util包下的TreeMap<K,V>既可满足此类需求,原理很简单,其重载的构造器之一 有一个参数,该参数接受一个比较器,比较器定 ...
- delphi --批量添加
公共批量添加方法 function BatchSQL(DC : TADOConnection; Qry : TADOQuery; StrSQL : TStrings): Boolean; var i ...
- 天天QA
w 0-Qphp 在全局范围内访问变量有哪几种方法A2种 <?php$a = 1;$b = 2;var_dump($GLOBALS); <?php$a = 1;$b = 2; functi ...
- responsive and functional programming RxJava
RxJava由于使用了多个回调,一开始理解起来可能有点难度,其实多看几遍也就明白了,它的招式套路都是一样的: 首先就是创建Observable,创建Observable有很多种方式,这里使用了Obse ...
- Maven 整合SSH框架
1. 传递依赖冲突 1.1 传递依赖:A(项目)依赖B,B依赖C(1.1版本),B是A的直接依赖,C是A的传递依赖; A(项目)又依赖D,D依赖C(1.2版本),此时,C有两个版本,产生冲突; 1.2 ...
- 原!mysql5.6 存储过程 批量建表
由于业务需求,需要按天分表,因此写了个存储过程,根据时间生成表. 根据createTime 的时间,以及 while循环的变量设置范围,生成该指定日期及之后的多张表. BEGIN ); ); ; '; ...
- Django内置分页器
分页 在Django中实现分页功能非常简单.因为Django已经内置了两个处理分类的类.分别是Paginator和Page.Paginator用来管理整个分类的一些属性,Page用来管理当前这个分页的 ...
- Hibernate简单配置
1.配置构建路径,加载用户库,hibernate4.3.8 MySQL-Driver 2.写User.java 纯POJO+持久化注解=PO @Entity @Table(name=&quo ...