**题意:**给你n个数[4,10000],问在其中任意选四个其GCD值为1的情况有几种。
**思路:**GCD为1的情况很简单 即各个数没有相同的质因数,所以求所有出现过的质因数次数再容斥一下……
很可惜是错的,因为完全有可能某四个数有两个公共质因数,所以还是使用普通的因子分解

#include <stdio.h>

#include <iostream>

#include <string.h>

#include <algorithm>

#include <utility>

#include <vector>

#include <map>

#include <set>

#include <string>

#include <stack>

#include <queue>

#define LL long long

#define MMF(x) memset((x),0,sizeof(x))

#define MMI(x) memset((x), INF, sizeof(x))

using namespace std;



const int INF = 0x3f3f3f3f;

const int N = 1e4+20;



LL mar[N];

LL ans[N];

LL C4(LL n)//组合数4的函数

{

return n*(n-1)*(n-2)*(n-3)/24;

}

void rec(int n)//分解因子 并记录个数

{

for(int i = 1; i*i <= n; i++)

{

if(n % i == 0)

{

mar[i]++;

if(n / i != i)

mar[n/i]++;

}

}

}



int main()

{

// prime();

int T;

int cnt = 0;

cin >> T;

while(T--)

{

int n;

scanf("%d", &n);

MMF(mar);

for(int i = 0; i < n; i++)

{

int t;

scanf("%d", &t);

rec(t);

}

for (int i = 10000; i >= 1; --i) {

ans[i] = C4(mar[i]);

for (int j = 2 * i; j <= 10000; j += i)

{

ans[i] -= ans[j];

}

}

printf("Case %d: %lld\n", ++cnt, ans[1]);

}

return 0;

}

//刚开始想找质因数排列组合 WA后一想 可能存在这种情况:某4个数的 相同质因数 有两种,这样后的容斥情况重复了

LightOJ 1161 - Extreme GCD 容斥的更多相关文章

  1. 1161 - Extreme GCD

    1161 - Extreme GCD    PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB All ...

  2. HDU 1695 GCD 容斥

    GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...

  3. hdu 1695 GCD 容斥+欧拉函数

    题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...

  4. HDU 5656 CA Loves GCD (容斥)

    题意:给定一个数组,每次他会从中选出若干个(至少一个数),求出所有数的GCD然后放回去,为了使自己不会无聊,会把每种不同的选法都选一遍,想知道他得到的所有GCD的和是多少. 析:枚举gcd,然后求每个 ...

  5. hdu 6053 trick gcd 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...

  6. bzoj2005 能量采集 gcd 容斥

    ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...

  7. 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)

    GCD Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissio ...

  8. HDU - 1695 GCD (容斥+枚举)

    题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...

  9. GCD HDU - 1695 (欧拉 + 容斥)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. Word Ladder Problem (DFS + BFS)

    Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest t ...

  2. C++ Mooc学习

    # C++远征篇之起航 1.IDE搭建,现在大部分同学都使用devC,devC的debug调试功能特别好用,可以跟踪变量.省去了在中间插入一些输出语句来输出中间变量的麻烦. 2.using names ...

  3. 什么是BCL

    原文: 原文:https://www.cnblogs.com/1996V/p/9037603.html 什么是BCL 当你通过VS创建一个项目后,你这个项目就已经引用好了通过.NET下的语言编写好的一 ...

  4. Sparsity Invariant CNNs

    文章链接 Abstract 本文研究稀疏输入下的卷积神经网络,并将其应用于稀疏的激光扫描数据的深度信息完成实验.首先,我们表明,即使当丢失数据的位置提供给网络时,传统卷积网络在应用于稀疏数据时性能也很 ...

  5. 【week2】四人小组项目(WBS、NABCD)

    项目选题:东北师范大学论坛 小组名称:nice! 项目组长:李权 组员:于淼 刘芳芳 杨柳 本周任务:要求给出需求概述.功能列表.痛点或亮点.NABCD及WBS模型在此项目中的应用. 作为东北师范大学 ...

  6. 这些JavaScript编程黑科技,装逼指南,高逼格代码,让你惊叹不已

    Javascript是一门很吊的语言,我可能学了假的JavaScript,哈哈,大家还有什么推荐的,补充送那啥邀请码. 本文秉承着:你看不懂是你SB,我写的代码就要牛逼. 1.单行写一个评级组件 &q ...

  7. 【Docker 命令】- kill命令

    docker kill :杀掉一个运行中的容器. 语法 docker kill [OPTIONS] CONTAINER [CONTAINER...] OPTIONS说明: -s :向容器发送一个信号 ...

  8. 添加路由时啥时候是dev啥时候是gw

    A qumu ethA1 B 宿主机 ethA2  ethC2 C 树莓派 ethC1 在A和C中都是直接sudo route add default dev ethA1/ethC1 这样做是有问题的 ...

  9. BZOJ 1227 虔诚的墓主人(离散化+树状数组)

    题目中矩形的尺寸太大,导致墓地的数目太多,如果我们统计每一个墓地的虔诚度,超时是一定的. 而常青树的数目<=1e5.这启发我们从树的方向去思考. 考虑一行没有树的情况,显然这一行的墓地的虔诚度之 ...

  10. BZOJ4736 温暖会指引我们前行(LCT+最大生成树)

    类似于瓶颈路,满足条件的路径一定在温度的最大生成树上,那么就是一个LCT维护MST的裸题了. #include<iostream> #include<cstdio> #incl ...