**题意:**给你n个数[4,10000],问在其中任意选四个其GCD值为1的情况有几种。
**思路:**GCD为1的情况很简单 即各个数没有相同的质因数,所以求所有出现过的质因数次数再容斥一下……
很可惜是错的,因为完全有可能某四个数有两个公共质因数,所以还是使用普通的因子分解

#include <stdio.h>

#include <iostream>

#include <string.h>

#include <algorithm>

#include <utility>

#include <vector>

#include <map>

#include <set>

#include <string>

#include <stack>

#include <queue>

#define LL long long

#define MMF(x) memset((x),0,sizeof(x))

#define MMI(x) memset((x), INF, sizeof(x))

using namespace std;



const int INF = 0x3f3f3f3f;

const int N = 1e4+20;



LL mar[N];

LL ans[N];

LL C4(LL n)//组合数4的函数

{

return n*(n-1)*(n-2)*(n-3)/24;

}

void rec(int n)//分解因子 并记录个数

{

for(int i = 1; i*i <= n; i++)

{

if(n % i == 0)

{

mar[i]++;

if(n / i != i)

mar[n/i]++;

}

}

}



int main()

{

// prime();

int T;

int cnt = 0;

cin >> T;

while(T--)

{

int n;

scanf("%d", &n);

MMF(mar);

for(int i = 0; i < n; i++)

{

int t;

scanf("%d", &t);

rec(t);

}

for (int i = 10000; i >= 1; --i) {

ans[i] = C4(mar[i]);

for (int j = 2 * i; j <= 10000; j += i)

{

ans[i] -= ans[j];

}

}

printf("Case %d: %lld\n", ++cnt, ans[1]);

}

return 0;

}

//刚开始想找质因数排列组合 WA后一想 可能存在这种情况:某4个数的 相同质因数 有两种,这样后的容斥情况重复了

LightOJ 1161 - Extreme GCD 容斥的更多相关文章

  1. 1161 - Extreme GCD

    1161 - Extreme GCD    PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB All ...

  2. HDU 1695 GCD 容斥

    GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...

  3. hdu 1695 GCD 容斥+欧拉函数

    题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...

  4. HDU 5656 CA Loves GCD (容斥)

    题意:给定一个数组,每次他会从中选出若干个(至少一个数),求出所有数的GCD然后放回去,为了使自己不会无聊,会把每种不同的选法都选一遍,想知道他得到的所有GCD的和是多少. 析:枚举gcd,然后求每个 ...

  5. hdu 6053 trick gcd 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...

  6. bzoj2005 能量采集 gcd 容斥

    ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...

  7. 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)

    GCD Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissio ...

  8. HDU - 1695 GCD (容斥+枚举)

    题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...

  9. GCD HDU - 1695 (欧拉 + 容斥)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. Red and Black(DFS深搜实现)

    Description There is a rectangular room, covered with square tiles. Each tile is colored either red ...

  2. c#程序的config文件问题

    1.vshost.exe.config和app.config两个文件可不要,但exe.config文件不可少. 2.但是app.config最好也要修改了,每次重新生成程序的时候.exe.cmonfi ...

  3. Hadoop 版本 生态圈 MapReduce模型

    忘的差不多了, 先补概念, 然后开始搭建集群实战 ... . 一 Hadoop版本 和 生态圈 1. Hadoop版本 (1) Apache Hadoop版本介绍 Apache的开源项目开发流程 : ...

  4. spring学习(一)——控制反转简单例子

    spring框架是一个开源的轻量级的基于IOC与AOP核心技术的容器框架,主要是解决企业的复杂操作实现. 那IOC与AOP,到底如何解释呢,在看spring视频中,两个专业术语一定必须要懂得. IOC ...

  5. iOS开发CABasicAnimation动画理解

    1.CALayer简介 CALayer是个与UIView很类似的概念,同样有backgroundColor.frame等相似的属性,我们可以将UIView看做一种特殊的CALayer.但实际上UIVi ...

  6. phpcms 本地环境调试缓慢 解决办法

    用记事本打开host文件,(文件位置,windows下一般在路径C:\Windows\System32\drivers\etc下)找到#127.0.0.1      localhost 这一句  去掉 ...

  7. tcp中的发送窗口是啥意思?

    初始的三次握手: 02:52:36.585412 IP 127.0.0.1.59764 > 127.0.0.1.8000: Flags [S], seq 3800457532, win 4369 ...

  8. hdu3625-Rooms

    题目 有\(n\)个房间,\(n\)个钥匙,每个钥匙随机出现在一个房间里,一个房间里有且仅有一个钥匙.我们现在手上没有钥匙,但我们要搜索所有的房间,所以我们有\(k\)次机会把一个房间炸开.一号房间里 ...

  9. 【bzoj2502】清理雪道 有上下界最小流

    题目描述 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞 ...

  10. OracleHelp以及其简单应用

    我自己写的简单的OracleHelp <?xml version="1.0" encoding="utf-8" ?> <configurati ...