Description

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Solution

首先如果不考虑有一个物品消失,用f数组来记录到第i个物品时,能达到j的重量的方案有多少,状态转移方程为f[i][j]=f[i-1][j-w[i]]+f[i-1][j]。求出f数组后,然后用数组c来表示用除去第i个物品外的所有物品,能达到j的重量的方案有多少,c[i][j]=f[n][j]-c[i][j-a[i]](c[i][j-a[i]]即其他物品加上a[i](即算上第i个物品)后能达到j的重量的方案数,减去后,剩下的就是,不用第i个物品达到j的方案数)

Code

 #include<iostream>
#include<cstdio>
using namespace std;
int a[],f[][],c[][];
int main()
{
int n,m;
cin>>n>>m;
for (int i=; i<=n; i++)
cin>>a[i];
f[][]=;
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
if (j>=a[i]) f[i][j]=(f[i-][j]+f[i-][j-a[i]])% ;
else f[i][j]=f[i-][j];
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
if (j>=a[i]) c[i][j]=(f[n][j]-c[i][j-a[i]]+)%;
else c[i][j]=f[n][j]%;
for (int i=; i<=n; i++)
{
for (int j=; j<=m-; j++)
cout<<c[i][j];
cout<<c[i][m]<<endl;
}
return ;
}

Source

http://www.lydsy.com/JudgeOnline/problem.php?id=2287

POJ Challenge消失之物的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  3. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  4. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  5. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  6. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  7. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

  8. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. 使用AutoIT对增加和删除文件属性的实现

    编写历程: 前段日子,晚上下班回家,一个舍友问我可不可以将一个目录下的隐藏文件全部显示出来(变成非隐藏文件),我说可以. 之后就开始大刀阔斧的寻找方法来做这件事,上网找,说需要一个Windows下的小 ...

  2. UEditor上传图片等附件都出现红叉,该怎么解决

    ------解决方案-------------------------------------------------------- 引用: 在本地这样配置就没问题:var URL = window. ...

  3. CentOS 6.5下Zabbix的安装配置

    1.确保开发环境lamp已经安装 2.下载zabbix 官方下载地址:http://www.zabbix.com/download.php 选择和自己系统对应的版本,这里选择安装与Linux内核为2. ...

  4. CentOS7安装ftp服务器

    一.问题的提出 想在windows环境下远程连接CentOS的文件并编辑 二.问题的解决 # 安装vsftp服务[root@localhost ~]# yum -y install ftp vsftp ...

  5. Array常用方法

    定义二维数组: list = [['保密',''],['男',1],['女',0]] 引用 怎么创建与返回值是二维数组形式 不知道你想要怎样的答案 如果是一方法想要返回二维数组,方法的最后一行是那个数 ...

  6. Delphi 调用C# DLL(包含委托)

    例子 C# Dll: using System; using System.Collections.Generic; using System.Text; using System.Diagnosti ...

  7. Azure Management API 之 利用 Windows Azure Management Libraries 来控制Azure platform

    在此之前,我曾经发过一篇文章讲叙了如何利用Azure power shell team 提供的class library. 而就在这篇文章发布之后不久,我又发现微软发布了一个preview 版本的Wi ...

  8. MYSQL中存储过程的创建,调用及语法

    MySQL 存储过程是从 MySQL 5.0 开始增加的新功能.存储过程的优点有一箩筐.不过最主要的还是执行效率和SQL 代码封装.特别是 SQL 代码封装功能,如果没有存储过程,在外部程序访问数据库 ...

  9. 在SpringMVC框架下实现文件的 上传和 下载

    在eclipse中的javaEE环境下:导入必要的架包 web.xml的配置文件: <?xml version="1.0" encoding="UTF-8" ...

  10. Android 蓝牙

    添加权限: <uses-permission Android:name="android.permission.BLUETOOTH_ADMIN"/> <uses- ...