atitit opencv apiattilax总结 约500个函数 .xlsx
atitit opencv apiattilax总结 约500个函数 .xlsx
1.3. CvAux中文参考手册 立体匹配 3D Tracking PCA) Markov Models \3
1.7. Cv中文参考手册 *图像处理 运动分析与对象跟踪 模式识别 照相机定标和三维重建8
1.1. CxCore中文参考手册 |
CxCore中文参考手册 |
1.2. 机器学习中文参考手册 knn svm
本文翻译尚未完成,请您将英文部分翻译为中文。
目录
1 简介:通用类和函数
1.1 CvStatModel
1.2 CvStatModel::CvStatModel
1.3 CvStatModel::CvStatModel(...)
1.4 CvStatModel::~CvStatModel
1.5 CvStatModel::clear
1.6 CvStatModel::save
1.7 CvStatModel::load
1.8 CvStatModel::write
1.9 CvStatModel::read
1.10 CvStatModel::train
1.11 CvStatModel::predict
2 Normal Bayes 分类器
2.1 CvNormalBayesClassifier
2.2 CvNormalBayesClassifier::train
2.3 CvNormalBayesClassifier::predict
3 K近邻算法
3.1 CvKNearest
3.2 CvKNearest::train
3.3 CvKNearest::find_nearest
3.4 例程:使用kNN进行2维样本集的分类,样本集的分布为混合高斯分布
4 支持向量机部分
4.1 CvSVM
4.2 CvSVMParams
4.3 CvSVM::train
4.4 CvSVM::get_support_vector*
4.5 补充:在WindowsXP+OpenCVRC1平台下整合OpenCV与libSVM
4.6 常用libSVM资料链接
5 决策树
5.1 CvDTreeSplit
5.2 CvDTreeNode
5.3 CvDTreeParams
5.4 CvDTreeTrainData
5.5 CvDTree
5.6 CvDTree::train
5.7 CvDTree::predict
6 Boosting
6.1 CvBoostParams
6.2 CvBoostTree
6.3 CvBoost
6.4 CvBoost::train
6.5 CvBoost::predict
6.6 CvBoost::prune
6.7 CvBoost::get_weak_predictors
7 中文翻译者
1.3. CvAux中文参考手册 立体匹配 3D Tracking PCA) Markov Models
\
目录
1 立体匹配
1.1 FindStereoCorrespondence
2 View Morphing Functions
2.1 MakeScanlines
2.2 PreWarpImage
2.3 FindRuns
2.4 DynamicCorrespondMulti
2.5 MakeAlphaScanlines
2.6 MorphEpilinesMulti
2.7 PostWarpImage
2.8 DeleteMoire
3 3D Tracking Functions
3.1 3dTrackerCalibrateCameras
3.2 3dTrackerLocateObjects
4 Eigen Objects (PCA) Functions
4.1 CalcCovarMatrixEx
4.2 CalcEigenObjects
4.3 CalcDecompCoeff
4.4 EigenDecomposite
4.5 EigenProjection
5 Embedded Hidden Markov Models Functions
5.1 CvHMM
5.2 CvImgObsInfo
5.3 Create2DHMM
5.4 Release2DHMM
5.5 CreateObsInfo
5.6 ReleaseObsInfo
5.7 ImgToObs_DCT
5.8 UniformImgSegm
5.9 InitMixSegm
5.10 EstimateHMMStateParams
5.11 EstimateTransProb
5.12 EstimateObsProb
5.13 EViterbi
5.14 MixSegmL2
1.4. 图像处理 1 梯度、边缘和角点 2 采样、插值和几何变换 3 形态学操作 4 滤波器与色彩空间变换 5 金字塔及其应用 6 连接部件 7 图像与轮廓矩 8 特殊图像变换 9 直方图 10 匹配
Cv图像处理
注意:本章描述图像处理和分析的一些函数。大多数函数都是针对两维象素数组的,这里,我们称这些数组为“图像”,但是它们不一定非得是IplImage 结构,也可以是CvMat或者CvMatND结构。
目录
1 梯度、边缘和角点
1.1 Sobel
1.2 Laplace
1.3 Canny
1.4 PreCornerDetect
1.5 CornerEigenValsAndVecs
1.6 CornerMinEigenVal
1.7 CornerHarris
1.8 FindCornerSubPix
1.9 GoodFeaturesToTrack
2 采样、插值和几何变换
2.1 InitLineIterator
2.2 SampleLine
2.3 GetRectSubPix
2.4 GetQuadrangleSubPix
2.5 Resize
2.6 WarpAffine
2.7 GetAffineTransform
2.8 2DRotationMatrix
2.9 WarpPerspective
2.10 WarpPerspectiveQMatrix
2.11 GetPerspectiveTransform
2.12 Remap
2.13 LogPolar
3 形态学操作
3.1 CreateStructuringElementEx
3.2 ReleaseStructuringElement
3.3 Erode
3.4 Dilate
3.5 MorphologyEx
4 滤波器与色彩空间变换
4.1 Smooth
4.2 Filter2D
4.3 CopyMakeBorder
4.4 Integral
4.5 CvtColor
4.6 Threshold
4.7 AdaptiveThreshold
5 金字塔及其应用 6 连接部件 7 图像与轮廓矩 7 图像与轮廓矩 8 特殊图像变换 9 直方图 10 匹配
5.1 PyrDown
5.2 PyrUp
6 连接部件
6.1 CvConnectedComp
6.2 FloodFill
6.3 FindContours
6.4 StartFindContours
6.5 FindNextContour
6.6 SubstituteContour
6.7 EndFindContours
6.8 PyrSegmentation
6.9 PyrMeanShiftFiltering
6.10 Watershed
7 图像与轮廓矩 8 特殊图像变换 9 直方图 10 匹配
7.1 Moments
7.2 GetSpatialMoment
7.3 GetCentralMoment
7.4 GetNormalizedCentralMoment
7.5 GetHuMoments
8 特殊图像变换
8.1 HoughLines
8.2 HoughCircles
8.3 DistTransform
8.4 Inpaint
9 直方图 10 匹配
9.1 CvHistogram
9.2 CreateHist
9.3 SetHistBinRanges
9.4 ReleaseHist
9.5 ClearHist
9.6 MakeHistHeaderForArray
9.7 QueryHistValue_1D
9.8 GetHistValue_1D
9.9 GetMinMaxHistValue
9.10 NormalizeHist
9.11 ThreshHist
9.12 CompareHist
9.13 CopyHist
9.14 CalcHist
9.15 CalcBackProject
9.16 CalcBackProjectPatch
9.17 CalcProbDensity
9.18 EqualizeHist
10 匹配
10.1 MatchTemplate
10.2 MatchShapes
10.3 CalcEMD2
1.5. Cv运动分析与对象跟踪 |
Cv运动分析与对象跟踪 |
1.6. Cv模式识别 目标检测
目录
1 目标检测
1.1 CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier, CvHaarClassifierCascade
1.2 cvLoadHaarClassifierCascade
1.3 cvReleaseHaarClassifierCascade
1.4 cvHaarDetectObjects
1.5 cvSetImagesForHaarClassifierCascade
1.6 cvRunHaarClassifierCascade
1.7. Cv中文参考手册 *图像处理 运动分析与对象跟踪 模式识别 照相机定标和三维重建 |
Cv中文参考手册 |
1.8. HighGUI中文参考手册 |
HighGUI中文参考手册 |
opencv中文版API文档 - 下载频道 - CSDN.NET.html
OpenCV API Reference — OpenCV 3.0.0-dev documentation.html
作者:: 绰号:老哇的爪子 ( 全名::Attilax Akbar Al Rapanui 阿提拉克斯 阿克巴 阿尔 拉帕努伊 )
汉字名:艾提拉(艾龙), EMAIL:1466519819@qq.com
转载请注明来源: http://www.cnblogs.com/attilax/
Atiend
atitit opencv apiattilax总结 约500个函数 .xlsx的更多相关文章
- Atitit opencv模板匹配attilax总结
Atitit opencv模板匹配attilax总结 找一幅图像的匹配的模板,可以在一段视频里寻找出我们感兴趣的东西,比如条形码的识别就可能需要这样类似的一个工作提取出条形码区域(当然这样的方法并不鲁 ...
- Atitit opencv版本新特性attilax总结
Atitit opencv版本新特性attilax总结 1.1. :OpenCV 3.0 发布,史上功能最全,速度最快的版1 1.2. 应用领域2 1.3. OPENCV2.4.3改进 2.4.2就有 ...
- Atitit opencv 模板匹配
Atitit opencv 模板匹配 1.1. 图片1 1.2. Atitit opencv 模板匹配 6中匹配算法貌似效果区别不大1 1.3. 对模板缩放的影响 一般的缩放可以,太大了就歇菜了.. ...
- opencv 简单、常用的图像处理函数(2)
opencv的项目以来配置和环境变量的配置都很简单,对于我这个没有c++基础的来说,复杂的是opencv的api和一些大部分来自国外没有翻译的资料,以及一些常见的编码问题. 资料 opencv 中文a ...
- OpenCv 2.4.9 (二) 核心函数
前言 经过前面一节的怎样读取图片,我们可以做一些有趣的图像变换,下面我们首先介绍使用遍历的方法实现,然后我们使用内置的函数实现. 矩阵掩码实现 矩阵掩码,和卷积神经网络中的卷积类似.一个例子如下: 现 ...
- 【opencv基础】测量运行时间的函数getTickCount/getCPUTickCount/getTickFrequency
函数的计算结果类型是double,单位是秒. 要使用更精确的计时,就需要使用getCPUTickCount(),不过现代计算机CPU的频率会随着负载而变化所以没大有必要使用该函数,可以参看函数的介绍[ ...
- OpenCV图像处理篇之阈值操作函数
阈值操作类型 这5种阈值操作类型保留opencv tutorials中的英文名称.依次为: Threshold Binary:即二值化,将大于阈值的灰度值设为最大灰度值.小于阈值的值设为0. Thre ...
- OpenCV中阈值(threshold)函数: threshold 。
OpenCV中提供了阈值(threshold)函数: threshold . 这个函数有5种阈值化类型,在接下来的章节中将会具体介绍. 为了解释阈值分割的过程,我们来看一个简单有关像素灰度的图片,该图 ...
- opencv图像二值化的函数cvThreshold()。 cvAdaptiveThreshol
OpenCV中对图像进行二值化的关键函数——cvThreshold(). 函数功能:采用Canny方法对图像进行边缘检测 函数原型: void cvThreshold( const CvArr* sr ...
随机推荐
- C++中有符号/无符号数比较
原创文章,欢迎阅读,禁止转载. 在我的程序中有如下代码编译被警告了 if(list.size()>msize){...} warning C4018: '<' : signed/unsig ...
- 升级react 15.4,常见的错误及解决方案
最近项目由react0.14.X升级到react 15版本,因为react15还是做了一些相对大一点的更新的(详情可以参考一下我的另一篇文章关于react15的一点总结),相对:来说react升级之后 ...
- label下面放置select的问题
今天做项目的时候突然发现一个问题. html标签label的用法分两种: <label for="name">姓名:</label><input id ...
- React Native填坑之旅--布局篇
代码在这里: https://github.com/future-challenger/petshop/tree/master/client/petshop/src/controller 回头看看RN ...
- 『TCP/IP详解——卷一:协议』读书笔记——17
2013-08-27 15:37:42 6.5 ICMP端口不可达差错 端口不可达报文是ICMP差错报文的一种,它是ICMP不可达报文中的一种,以此来看一看ICMP差错报文中所附加的信息.使用UDP来 ...
- MongoDB学习笔记-04 索引
索引是用来加速查询的.有了索引之后,数据库不必进行全表扫描,只需先在索引中查找,再根据找到的索引查找数据.MongoDB的索引几乎和传统关系型数据库一样. 创建索引 创建索引是在相应的集合中使用ens ...
- Android AbsListView 的item动画类库 —— JazzyListView
https://github.com/twotoasters/JazzyListView/tree/master/sample github:https://github.com/twotoaster ...
- 8.4.4 Picasso
Picasso 收到加载及显示图片的任务,创建 Request 并将它交给 Dispatcher,Dispatcher 分发任务到具体 RequestHandler,任务通过 MemoryCache ...
- C语言atof()函数:将字符串转换为double(双精度浮点数)
头文件:#include <stdlib.h> 函数 atof() 用于将字符串转换为双精度浮点数(double),其原型为:double atof (const char* str); ...
- hdu 5945 Fxx and game
青年理论计算机科学家Fxx给的学生设计了一款数字游戏. 一开始你将会得到一个数X,每次游戏将给定两个参数x,k,t, 任意时刻你可以对你的数执行下面两个步骤之一: .X=X−i(<=i<= ...