OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reach pixel level, to achieve subpixel accuracy, need to use other find to refine the result.

Here i to use cv::findTransformECC. Ecc means Enhanced Correlation Coefficient. In this function, it use Guassian Newton iteration to find the maximum correlation coefficient.

int _refineSrchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat matWarp = cv::Mat::eye(, , CV_32FC1);
matWarp.at<float>(,) = ptResult.x;
matWarp.at<float>(,) = ptResult.y;int number_of_iterations = ;
double termination_eps = 1e-; cv::findTransformECC ( matTmpl, mat, matWarp, MOTION_TRANSLATION, TermCriteria (TermCriteria::COUNT+TermCriteria::EPS,
number_of_iterations, termination_eps));
ptResult.x = matWarp.at<float>(,);
ptResult.y = matWarp.at<float>(,);
return ;
} int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat img_display, matResult;
const int match_method = CV_TM_SQDIFF; mat.copyTo(img_display); /// Create the result matrix
int result_cols = mat.cols - matTmpl.cols + ;
int result_rows = mat.rows - matTmpl.rows + ; matResult.create(result_rows, result_cols, CV_32FC1); /// Do the Matching and Normalize
cv::matchTemplate(mat, matTmpl, matResult, match_method);
cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() ); /// Localizing the best match with minMaxLoc
double minVal; double maxVal;
cv::Point minLoc, maxLoc, matchLoc; cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat()); /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
matchLoc = minLoc;
else
matchLoc = maxLoc; ptResult.x = (float)matchLoc.x;
ptResult.y = (float)matchLoc.y;
_refineSrchTemplate ( mat, matTmpl, ptResult ); ptResult.x += (float)( matTmpl.cols / + 0.5 ); // +0.5 is the center of the template is between 2 pixels. For example, if template size is 20, the center of the image is 10.5.
ptResult.y += (float)( matTmpl.rows / + 0.5 ); //The refine returned result is the left upper corner cooridnate.
return ;
}

There is also another way to refine the template matching result. It is by minimizing the difference between template and search image. In this method i use Levenberg–Marquardt method to iterate. It has been introduced in detail in paper http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf. And pseudo code has been given in page 15. I implemented in C++ based on OpenCv. The source code is as below.

void filter2D_Conv(InputArray src, OutputArray dst, int ddepth,
InputArray kernel, Point anchor = Point(-,-),
double delta = , int borderType = BORDER_DEFAULT )
{
cv::Mat newKernel;
const int FLIP_H_Z = -;
cv::flip ( kernel, newKernel, FLIP_H_Z );
cv::Point newAnchor = anchor;
if ( anchor.x > && anchor.y >= )
newAnchor = cv::Point ( newKernel.cols - anchor.x - , newKernel.rows - anchor.y - );
cv::filter2D ( src, dst, ddepth, newKernel, newAnchor, delta, borderType );
}
float GuassianValue2D(float ssq, float x, float y )
{
return exp( -(x*x + y*y) / ( 2.0 *ssq ) ) / ( 2.0 * CV_PI * ssq );
} template<typename _tp>
void meshgrid ( float xStart, float xInterval, float xEnd, float yStart, float yInterval, float yEnd, cv::Mat &matX, cv::Mat &matY )
{
std::vector<_tp> vectorX, vectorY;
_tp xValue = xStart;
while ( xValue <= xEnd ) {
vectorX.push_back(xValue);
xValue += xInterval;
} _tp yValue = yStart;
while ( yValue <= yEnd ) {
vectorY.push_back(yValue);
yValue += yInterval;
}
cv::Mat matCol ( vectorX );
matCol = matCol.reshape ( , ); cv::Mat matRow ( vectorY );
matRow = matRow.reshape ( , vectorY.size() );
matX = cv::repeat ( matCol, vectorY.size(), );
matY = cv::repeat ( matRow, , vectorX.size() );
} int _refineWithLMIteration( const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult )
{
cv::Mat matGuassian;
int width = ;
float ssq = .;
matGuassian.create(width * + , width * + , CV_32FC1 );
cv::Mat matI, matT;
mat.convertTo ( matI, CV_32FC1);
matTmpl.convertTo ( matT, CV_32FC1 ); cv::Mat matX, matY;
meshgrid<float> ( -width, , width, -width, , width, matX, matY );
for ( int row = ; row < matX.rows; ++ row )
for ( int col = ; col < matX.cols; ++ col )
{
matGuassian.at<float>(row, col) = GuassianValue2D( ssq, matX.at<float>(row, col), matY.at<float>(row, col) );
}
matGuassian = matGuassian.mul(-matX);
cv::Mat matTmp( matGuassian, Range::all(), cv::Range(,));
float fSum = cv::sum(matTmp)[];
cv::Mat matGuassianKernalX, matGuassianKernalY;
matGuassianKernalX = matGuassian / fSum; //XSG question, the kernel is reversed?
cv::transpose( matGuassianKernalX, matGuassianKernalY ); /**************** Using LM Iteration ****************/
int N = , v = ;
cv::Mat matD;
matD.create( ,, CV_32FC1 );
matD.at<float>(, ) = ptResult.x;
matD.at<float>(, ) = ptResult.y; cv::Mat matDr = matD.clone(); cv::Mat matInputNew; auto interp2 = [matI, matT](cv::Mat &matOutput, const cv::Mat &matD) {
cv::Mat map_x, map_y;
map_x.create(matT.size(), CV_32FC1);
map_y.create(matT.size(), CV_32FC1);
cv::Point2f ptStart(matD.at<float>(, ), matD.at<float>(, ) );
for (int row = ; row < matT.rows; ++ row )
for (int col = ; col < matT.cols; ++ col )
{
map_x.at<float>(row, col) = ptStart.x + col;
map_y.at<float>(row, col) = ptStart.y + row;
}
cv::remap ( matI, matOutput, map_x, map_y, cv::INTER_LINEAR );
}; interp2 ( matInputNew, matD ); cv::Mat matR = matT - matInputNew;
cv::Mat matRn = matR.clone();
float fRSum = cv::sum ( matR.mul ( matR ) )[];
float fRSumN = fRSum; cv::Mat matDerivativeX, matDerivativeY;
filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE ); cv::Mat matRt = matR.reshape ( , );
cv::Mat matRtTranspose;
cv::transpose ( matRt, matRtTranspose );
matDerivativeX = matDerivativeX.reshape ( , );
matDerivativeY = matDerivativeY.reshape ( , ); const float* p = matDerivativeX.ptr<float>();
std::vector<float> vecDerivativeX(p, p + matDerivativeX.cols); cv::Mat matJacobianT, matJacobian;
matJacobianT.push_back ( matDerivativeX );
matJacobianT.push_back ( matDerivativeY );
cv::transpose ( matJacobianT, matJacobian ); cv::Mat matE = cv::Mat::eye(, , CV_32FC1); cv::Mat A = matJacobianT * matJacobian;
cv::Mat g = - matJacobianT * matRtTranspose; double min, max;
cv::minMaxLoc(A, &min, &max);
float mu = .f * max;
float err1 = 1e-, err2 = 1e-;
auto Nmax = ;
while ( cv::norm ( matDr ) > err2 && N < Nmax ) {
++ N;
cv::solve ( A + mu * matE, -g, matDr ); // equal to matlab matDr = (A+mu*E)\(-g); cv::Mat matDn = matD + matDr;
if ( cv::norm ( matDr ) < err2 ) {
interp2 ( matInputNew, matDn );
matRn = matT - matInputNew;
fRSumN = cv::sum ( matR.mul ( matR ) )[];
matD = matDn;
break;
}else {
if (matDn.at<float> ( , ) > matI.cols - matT.cols ||
matDn.at<float> ( , ) < ||
matDn.at<float> ( , ) > matI.rows - matT.rows ||
matDn.at<float> ( , ) < ) {
mu *= v;
v *= ;
}else {
interp2 ( matInputNew, matDn );
matRn = matT - matInputNew;
fRSumN = cv::sum ( matRn.mul ( matRn ) )[]; cv::Mat matDrTranspose;
cv::transpose ( matDr, matDrTranspose );
cv::Mat matL = ( matDrTranspose * ( mu * matDr - g ) ); // L(0) - L(hlm) = 0.5 * h' ( uh - g)
auto L = matL.at<float>(, );
auto F = fRSum - fRSumN;
float rho = F / L; if ( rho > ) {
matD = matDn.clone();
matR = matRn.clone();
fRSum = fRSumN; filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
matRt = matR.reshape(, );
cv::transpose ( matRt, matRtTranspose ); matDerivativeX = matDerivativeX.reshape(, );
matDerivativeY = matDerivativeY.reshape(, ); matJacobianT.release();
matJacobianT.push_back(matDerivativeX);
matJacobianT.push_back(matDerivativeY);
cv::transpose(matJacobianT, matJacobian); A = matJacobianT * matJacobian;
g = - matJacobianT * matRtTranspose; mu *= max ( .f/.f, - pow ( * rho-, ) );
}else {
mu *= v; v *= ;
}
}
}
} ptResult.x = matD.at<float>(, );
ptResult.y = matD.at<float>(, );
return ;
} int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat img_display, matResult;
const int match_method = CV_TM_SQDIFF; mat.copyTo(img_display); /// Create the result matrix
int result_cols = mat.cols - matTmpl.cols + ;
int result_rows = mat.rows - matTmpl.rows + ; matResult.create(result_rows, result_cols, CV_32FC1); /// Do the Matching and Normalize
cv::matchTemplate(mat, matTmpl, matResult, match_method);
cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() ); /// Localizing the best match with minMaxLoc
double minVal; double maxVal;
cv::Point minLoc, maxLoc, matchLoc; cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat()); /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
matchLoc = minLoc;
else
matchLoc = maxLoc; ptResult.x = (float)matchLoc.x;
ptResult.y = (float)matchLoc.y;
_refineWithLMIteration(mat, matTmpl, ptResult);   ptResult.x += (float)( matTmpl.cols / 2 + 0.5 );
  ptResult.y += (float)( matTmpl.rows / 2 + 0.5 );   return ;
}

OpenCV Template Matching Subpixel Accuracy的更多相关文章

  1. OpenCV stereo matching BM 算法

    一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calcul ...

  2. OpenCV stereo matching 代码 matlab实现视差显示

    转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础知识 计算机视觉是一门研究 ...

  3. [OpenCV] Feature Matching

    得到了杂乱无章的特征点后,要筛选出好的特征点,也就是good matches. BruteForceMatcher FlannBasedMatcher 两者的区别:http://yangshen998 ...

  4. [ICRA 2019]Multi-Task Template Matching for Object Detection, Segmentation and Pose Estimation Using Depth Images

    简介         本文作者提出新的框架(MTTM),使用模板匹配来完成多个任务,从深度图的模板上找到目标物体,通过比较模板特征图与场景特征图来预测分割mask和模板与检测物体之间的位姿变换.作者提 ...

  5. Get Intensity along a line based on OpenCV

    The interpolate function is used to get intensity of a point which is not on exactly a pixel. The co ...

  6. Opencv 摄像头矫正

    摄像机有6个外参数(3个旋转,3个平移),5个内参数(fx,fy,cx,cy,θ),摄像机的内参数在不同的视场,分辨率中是一样的,但是不同的视角下6个外参数是变化的,一个平面物体可以固定8个参数,(为 ...

  7. OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)

    PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...

  8. Opencv——相机标定

    相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像. 相机标定的输入:标定图像上所有内角 ...

  9. [OpenCV-Python] OpenCV 中的图像处理 部分 IV (六)

    部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • ...

随机推荐

  1. 使用npm安装一些包失败了的看过来(npm国内镜像介绍)

    这个也是网上搜的,亲自试过,非常好用! 镜像使用方法(三种办法任意一种都能解决问题,建议使用第三种,将配置写死,下次用的时候配置还在): 1.通过config命令 npm config set reg ...

  2. jquery特效大全

    http://www.oschina.net/project/tag/300/jquery-effects

  3. asp.net环境搭建

    win7 开启internet infornation server 勾选相应配置 管理设置里,新增网站,对网站进行配置,设置用户验证连接 根目录下,配置文件web.config

  4. xcode8让真机测试支持ios8.0以下版本

    xcode8支持ios8以下真机测试方法: 1.应用程序-xcode 显示包内容-Contents-Developer-Platforms-iPhoneOS.platform-DeviceSuppor ...

  5. 承接Unreal4外包虚幻外包,北京正规公司

    VR产业链的现状 去年Facebook 20亿美元收购虚拟现实技术Oculus VR,提高了大家对VR设备.而国内,红杉资本投资蚁视,更是引爆了资本市场对VR/AR 的关注.其中有四块是我们较为常见且 ...

  6. dicom转换软件的一点头绪

    想用c#写一个由dicom格式转化为jpeg或者其他格式的文件 找到了这个类 fo-dicom类

  7. [译]How to Setup Sync Gateway on Ubuntu如何在ubuntu上安装sync-gateway

    参考文章https://hidekiitakura.com/2015/03/21/how-to-setup-sync-gateway-on-ubuntudigitalocean/ 在此对作者表示感谢 ...

  8. git学习4:分支管理

    每次提交,Git都把它们串成一条时间线,这条时间线就是一个分支.截止到目前,只有一条时间线,这个分支叫主分支,即master分支,HEAD指向master,master指向提交,所以,HEAD指向的就 ...

  9. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  10. 浅谈人脸检测之Haar分类器方法

    我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并 ...