OpenCV Template Matching Subpixel Accuracy
OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reach pixel level, to achieve subpixel accuracy, need to use other find to refine the result.
Here i to use cv::findTransformECC. Ecc means Enhanced Correlation Coefficient. In this function, it use Guassian Newton iteration to find the maximum correlation coefficient.
- int _refineSrchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
- {
- cv::Mat matWarp = cv::Mat::eye(, , CV_32FC1);
- matWarp.at<float>(,) = ptResult.x;
- matWarp.at<float>(,) = ptResult.y;int number_of_iterations = ;
- double termination_eps = 1e-;
- cv::findTransformECC ( matTmpl, mat, matWarp, MOTION_TRANSLATION, TermCriteria (TermCriteria::COUNT+TermCriteria::EPS,
- number_of_iterations, termination_eps));
- ptResult.x = matWarp.at<float>(,);
- ptResult.y = matWarp.at<float>(,);
- return ;
- }
- int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
- {
- cv::Mat img_display, matResult;
- const int match_method = CV_TM_SQDIFF;
- mat.copyTo(img_display);
- /// Create the result matrix
- int result_cols = mat.cols - matTmpl.cols + ;
- int result_rows = mat.rows - matTmpl.rows + ;
- matResult.create(result_rows, result_cols, CV_32FC1);
- /// Do the Matching and Normalize
- cv::matchTemplate(mat, matTmpl, matResult, match_method);
- cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() );
- /// Localizing the best match with minMaxLoc
- double minVal; double maxVal;
- cv::Point minLoc, maxLoc, matchLoc;
- cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
- /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
- if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
- matchLoc = minLoc;
- else
- matchLoc = maxLoc;
- ptResult.x = (float)matchLoc.x;
- ptResult.y = (float)matchLoc.y;
- _refineSrchTemplate ( mat, matTmpl, ptResult );
- ptResult.x += (float)( matTmpl.cols / + 0.5 ); // +0.5 is the center of the template is between 2 pixels. For example, if template size is 20, the center of the image is 10.5.
- ptResult.y += (float)( matTmpl.rows / + 0.5 ); //The refine returned result is the left upper corner cooridnate.
- return ;
- }
There is also another way to refine the template matching result. It is by minimizing the difference between template and search image. In this method i use Levenberg–Marquardt method to iterate. It has been introduced in detail in paper http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf. And pseudo code has been given in page 15. I implemented in C++ based on OpenCv. The source code is as below.
- void filter2D_Conv(InputArray src, OutputArray dst, int ddepth,
- InputArray kernel, Point anchor = Point(-,-),
- double delta = , int borderType = BORDER_DEFAULT )
- {
- cv::Mat newKernel;
- const int FLIP_H_Z = -;
- cv::flip ( kernel, newKernel, FLIP_H_Z );
- cv::Point newAnchor = anchor;
- if ( anchor.x > && anchor.y >= )
- newAnchor = cv::Point ( newKernel.cols - anchor.x - , newKernel.rows - anchor.y - );
- cv::filter2D ( src, dst, ddepth, newKernel, newAnchor, delta, borderType );
- }
- float GuassianValue2D(float ssq, float x, float y )
- {
- return exp( -(x*x + y*y) / ( 2.0 *ssq ) ) / ( 2.0 * CV_PI * ssq );
- }
- template<typename _tp>
- void meshgrid ( float xStart, float xInterval, float xEnd, float yStart, float yInterval, float yEnd, cv::Mat &matX, cv::Mat &matY )
- {
- std::vector<_tp> vectorX, vectorY;
- _tp xValue = xStart;
- while ( xValue <= xEnd ) {
- vectorX.push_back(xValue);
- xValue += xInterval;
- }
- _tp yValue = yStart;
- while ( yValue <= yEnd ) {
- vectorY.push_back(yValue);
- yValue += yInterval;
- }
- cv::Mat matCol ( vectorX );
- matCol = matCol.reshape ( , );
- cv::Mat matRow ( vectorY );
- matRow = matRow.reshape ( , vectorY.size() );
- matX = cv::repeat ( matCol, vectorY.size(), );
- matY = cv::repeat ( matRow, , vectorX.size() );
- }
- int _refineWithLMIteration( const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult )
- {
- cv::Mat matGuassian;
- int width = ;
- float ssq = .;
- matGuassian.create(width * + , width * + , CV_32FC1 );
- cv::Mat matI, matT;
- mat.convertTo ( matI, CV_32FC1);
- matTmpl.convertTo ( matT, CV_32FC1 );
- cv::Mat matX, matY;
- meshgrid<float> ( -width, , width, -width, , width, matX, matY );
- for ( int row = ; row < matX.rows; ++ row )
- for ( int col = ; col < matX.cols; ++ col )
- {
- matGuassian.at<float>(row, col) = GuassianValue2D( ssq, matX.at<float>(row, col), matY.at<float>(row, col) );
- }
- matGuassian = matGuassian.mul(-matX);
- cv::Mat matTmp( matGuassian, Range::all(), cv::Range(,));
- float fSum = cv::sum(matTmp)[];
- cv::Mat matGuassianKernalX, matGuassianKernalY;
- matGuassianKernalX = matGuassian / fSum; //XSG question, the kernel is reversed?
- cv::transpose( matGuassianKernalX, matGuassianKernalY );
- /**************** Using LM Iteration ****************/
- int N = , v = ;
- cv::Mat matD;
- matD.create( ,, CV_32FC1 );
- matD.at<float>(, ) = ptResult.x;
- matD.at<float>(, ) = ptResult.y;
- cv::Mat matDr = matD.clone();
- cv::Mat matInputNew;
- auto interp2 = [matI, matT](cv::Mat &matOutput, const cv::Mat &matD) {
- cv::Mat map_x, map_y;
- map_x.create(matT.size(), CV_32FC1);
- map_y.create(matT.size(), CV_32FC1);
- cv::Point2f ptStart(matD.at<float>(, ), matD.at<float>(, ) );
- for (int row = ; row < matT.rows; ++ row )
- for (int col = ; col < matT.cols; ++ col )
- {
- map_x.at<float>(row, col) = ptStart.x + col;
- map_y.at<float>(row, col) = ptStart.y + row;
- }
- cv::remap ( matI, matOutput, map_x, map_y, cv::INTER_LINEAR );
- };
- interp2 ( matInputNew, matD );
- cv::Mat matR = matT - matInputNew;
- cv::Mat matRn = matR.clone();
- float fRSum = cv::sum ( matR.mul ( matR ) )[];
- float fRSumN = fRSum;
- cv::Mat matDerivativeX, matDerivativeY;
- filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
- filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
- cv::Mat matRt = matR.reshape ( , );
- cv::Mat matRtTranspose;
- cv::transpose ( matRt, matRtTranspose );
- matDerivativeX = matDerivativeX.reshape ( , );
- matDerivativeY = matDerivativeY.reshape ( , );
- const float* p = matDerivativeX.ptr<float>();
- std::vector<float> vecDerivativeX(p, p + matDerivativeX.cols);
- cv::Mat matJacobianT, matJacobian;
- matJacobianT.push_back ( matDerivativeX );
- matJacobianT.push_back ( matDerivativeY );
- cv::transpose ( matJacobianT, matJacobian );
- cv::Mat matE = cv::Mat::eye(, , CV_32FC1);
- cv::Mat A = matJacobianT * matJacobian;
- cv::Mat g = - matJacobianT * matRtTranspose;
- double min, max;
- cv::minMaxLoc(A, &min, &max);
- float mu = .f * max;
- float err1 = 1e-, err2 = 1e-;
- auto Nmax = ;
- while ( cv::norm ( matDr ) > err2 && N < Nmax ) {
- ++ N;
- cv::solve ( A + mu * matE, -g, matDr ); // equal to matlab matDr = (A+mu*E)\(-g);
- cv::Mat matDn = matD + matDr;
- if ( cv::norm ( matDr ) < err2 ) {
- interp2 ( matInputNew, matDn );
- matRn = matT - matInputNew;
- fRSumN = cv::sum ( matR.mul ( matR ) )[];
- matD = matDn;
- break;
- }else {
- if (matDn.at<float> ( , ) > matI.cols - matT.cols ||
- matDn.at<float> ( , ) < ||
- matDn.at<float> ( , ) > matI.rows - matT.rows ||
- matDn.at<float> ( , ) < ) {
- mu *= v;
- v *= ;
- }else {
- interp2 ( matInputNew, matDn );
- matRn = matT - matInputNew;
- fRSumN = cv::sum ( matRn.mul ( matRn ) )[];
- cv::Mat matDrTranspose;
- cv::transpose ( matDr, matDrTranspose );
- cv::Mat matL = ( matDrTranspose * ( mu * matDr - g ) ); // L(0) - L(hlm) = 0.5 * h' ( uh - g)
- auto L = matL.at<float>(, );
- auto F = fRSum - fRSumN;
- float rho = F / L;
- if ( rho > ) {
- matD = matDn.clone();
- matR = matRn.clone();
- fRSum = fRSumN;
- filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
- filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
- matRt = matR.reshape(, );
- cv::transpose ( matRt, matRtTranspose );
- matDerivativeX = matDerivativeX.reshape(, );
- matDerivativeY = matDerivativeY.reshape(, );
- matJacobianT.release();
- matJacobianT.push_back(matDerivativeX);
- matJacobianT.push_back(matDerivativeY);
- cv::transpose(matJacobianT, matJacobian);
- A = matJacobianT * matJacobian;
- g = - matJacobianT * matRtTranspose;
- mu *= max ( .f/.f, - pow ( * rho-, ) );
- }else {
- mu *= v; v *= ;
- }
- }
- }
- }
- ptResult.x = matD.at<float>(, );
- ptResult.y = matD.at<float>(, );
- return ;
- }
- int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
- {
- cv::Mat img_display, matResult;
- const int match_method = CV_TM_SQDIFF;
- mat.copyTo(img_display);
- /// Create the result matrix
- int result_cols = mat.cols - matTmpl.cols + ;
- int result_rows = mat.rows - matTmpl.rows + ;
- matResult.create(result_rows, result_cols, CV_32FC1);
- /// Do the Matching and Normalize
- cv::matchTemplate(mat, matTmpl, matResult, match_method);
- cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() );
- /// Localizing the best match with minMaxLoc
- double minVal; double maxVal;
- cv::Point minLoc, maxLoc, matchLoc;
- cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
- /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
- if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
- matchLoc = minLoc;
- else
- matchLoc = maxLoc;
- ptResult.x = (float)matchLoc.x;
- ptResult.y = (float)matchLoc.y;
- _refineWithLMIteration(mat, matTmpl, ptResult);
- ptResult.x += (float)( matTmpl.cols / 2 + 0.5 );
ptResult.y += (float)( matTmpl.rows / 2 + 0.5 );- return ;
}
OpenCV Template Matching Subpixel Accuracy的更多相关文章
- OpenCV stereo matching BM 算法
一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calcul ...
- OpenCV stereo matching 代码 matlab实现视差显示
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础知识 计算机视觉是一门研究 ...
- [OpenCV] Feature Matching
得到了杂乱无章的特征点后,要筛选出好的特征点,也就是good matches. BruteForceMatcher FlannBasedMatcher 两者的区别:http://yangshen998 ...
- [ICRA 2019]Multi-Task Template Matching for Object Detection, Segmentation and Pose Estimation Using Depth Images
简介 本文作者提出新的框架(MTTM),使用模板匹配来完成多个任务,从深度图的模板上找到目标物体,通过比较模板特征图与场景特征图来预测分割mask和模板与检测物体之间的位姿变换.作者提 ...
- Get Intensity along a line based on OpenCV
The interpolate function is used to get intensity of a point which is not on exactly a pixel. The co ...
- Opencv 摄像头矫正
摄像机有6个外参数(3个旋转,3个平移),5个内参数(fx,fy,cx,cy,θ),摄像机的内参数在不同的视场,分辨率中是一样的,但是不同的视角下6个外参数是变化的,一个平面物体可以固定8个参数,(为 ...
- OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...
- Opencv——相机标定
相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像. 相机标定的输入:标定图像上所有内角 ...
- [OpenCV-Python] OpenCV 中的图像处理 部分 IV (六)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • ...
随机推荐
- jQuery中,$('#main') 与 document.getElementById('main')是什么样的关系-转
$('#main')[0]和document.getElementById('main')两个一模一样.解释:$('#main'):是一个jquery写法,#main是一个过滤器表示方法,表示查找一个 ...
- ReactJS入门指南
ReactJS入门指南 本文旨在介绍ReactJS的基本知识,并一步步详细介绍React的基本概念和使用方法等,以及相应的Demo.本文在很大程度上参考了React官方文档和官方指南.如果你英语还不错 ...
- Python xlrd、xlwt、xlutils修改Excel文件
一.xlrd读取excel 这里介绍一个不错的包xlrs,可以工作在任何平台.这也就意味着你可以在Linux下读取Excel文件.首先,打开workbook: import xlrdwb = x ...
- My Tornado Particle Effect
These animations are more able to demostrate this plugin than the following static images. :) test 1 ...
- if、if elif判断
1.if.py #coding=utf-8 user = 'alex' passwd = 'alex3714' username = input('username:') password = inp ...
- Processing 电子罗盘校准(以 MPU9250为例)
使用Processing 软件, 通过 arduino 输入 电子罗盘的数据,通过PC端进行校准,程序如下: import processing.serial.*; Serial myPort; Ar ...
- dingding post POST请求
POST请求请在HTTP Header中设置 Content-Type:application/json,否则接口调用失败 获取AccessToken Https请求方式: GET https://o ...
- UVA 1151 买还是建(最小生成树)
买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...
- java日期处理SimpleDateFormat等
1.mysql数据库中有这样一个表: mysql> select * from test_table;+----------+---------------------+| username | ...
- HttpWebRequest-header设置
http://www.cnblogs.com/yczz/archive/2012/06/01/2530484.html http://blog.csdn.net/htsnoopy/article/de ...