最大期望算法Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。
统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习计算机视觉数据聚类(Data Clustering)领域。
最大期望算法经过两个步骤交替进行计算
  第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;
  第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。
  M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
总体来说,EM的算法流程如下:
  1.初始化分布参数
  2.重复直到收敛:
E步骤:估计未知参数的期望值,给出当前的参数估计
M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。
 
迭代使用EM步骤,直至收敛。
  
  可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家看不出两个碗所容纳的菜有什么分量上的不同为止。EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
  EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据(incomplete data)。
  假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成, X 和Z = (X,Y)分别称为不完整数据和完整数据。假设Z的联合概率密度参数化地定义为P(X,Y|Θ),其中Θ 表示要被估计的参数。Θ 的最大似然估计是求不完整数据的对数似然函数L(X;Θ)的最大值而得到的:
  L(Θ; X )= log p(X |Θ) = ∫log p(X ,Y |Θ)dY ;
EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数Lc( X;Θ )的期望来最大化不完整数据的对数似然函数,其中:
  Lc(X;Θ) =log p(X,Y |Θ) ;
假设在算法第t次迭代后Θ 获得的估计记为Θ(t ) ,则在(t+1)次迭代时,
E-步:计算完整数据的对数似然函数的期望,记为:
Q(Θ |Θ (t) ) = E{Lc(Θ;Z)|X;Θ(t) };
M-步:通过最大化Q(Θ |Θ(t) ) 来获得新的Θ 。
通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。直观地理解EM算法,它也可被看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数λ0 ,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ ,并在新的参数下重新确定模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。
EM算法的主要目的是提供一个简单的迭代算法计算后验密度函数,它的最大优点是简单和稳定,但容易陷入局部最优

EM最大期望化算法的更多相关文章

  1. EM(期望最大化)算法初步认识

    不多说,直接上干货! 机器学习十大算法之一:EM算法(即期望最大化算法).能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么 ...

  2. EM最大期望算法

    [简介] em算法,指的是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察的隐性变量的概率 ...

  3. 【机器学习】EM最大期望算法

    EM, ExpectationMaximization Algorithm, 期望最大化算法.一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估 ...

  4. MLE极大似然估计和EM最大期望算法

    机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...

  5. EM相关两个算法 k-mean算法和混合高斯模型

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...

  6. Wellner 自适应阈值二值化算法

    参考文档: Adaptive Thresholding for the DigitalDesk.pdf       Adaptive Thresholding Using the Integral I ...

  7. sauvola二值化算法研究

    sauvola二值化算法研究   sauvola是一种考虑局部均值亮度的图像二值化方法, 以局部均值为基准在根据标准差做些微调.算法实现上一般用积分图方法 来实现.这个方法能很好的解决全局阈值方法的短 ...

  8. PIE SDK栅格矢量化算法

    1.算法功能简介 栅格数据矢量化较为复杂,如果由一幅扫描的数字化地图来建立矢量数据库,则需要经过数字图象处理,如边缘增强.细化.二值化.特征提取及模式识别才能获得矢量数据.人们通常将多色地图分色后逐个 ...

  9. 一种局部二值化算法:Sauvola算法

    之前接触过全局二值化(OTSU算法),还有OPENCV提供的自适应二值化,最近又了解到一种新的局部二值化算法,Sauvola算法. 转载自:http://www.dididongdong.com/ar ...

随机推荐

  1. MyEclipse 8.5汉化教程

    汉化包下载:http://yunpan.cn/QIUaVS2CU5wCd 1.解压MyEclipse中的language文件夹 以我的安装目录为例,我的MyEclipse8.5的安装在D:盘下.将解压 ...

  2. (转)关于Oracle AUTONOMOUS TRANSACTION(自治事务)的介绍

    AUTONOMOUS TRANSACTION(自治事务)的介绍 在基于低版本的ORACLE做一些项目的过程中,有时会遇到一些头疼的问题,比如想在执行当前一个由多个DML组成的transaction(事 ...

  3. 13 Balls Problem

    今天讨论的是称球问题. No.3 13 balls problem You are given 13 balls. The odd ball may be either heavier or ligh ...

  4. VB.NET TextBox 只允许输入1-100之间的整数 简洁篇

    Dim Str As String = "" Private Sub txtRecond_KeyUp(sender As System.Object, e As System.Wi ...

  5. myeclicps开发web时候复制一个工程改名字后执行出现404错误

    当部署的时候会出现如下的警告,此时请按照如下的方法解决: 1.选择要运行的工程,右击-->properties-->在上边的搜索框中搜索web,选中web,将Web Context-roo ...

  6. python-day-20

    重点总结记录 1.Django请求的生命周期 路由系统 -> 试图函数(获取模板+数据=>渲染) -> 字符串返回给用户 2.路由系统 /index/ -> 函数或类.as_v ...

  7. loadrunner ---模拟多IP登录

    1.打开HP LoadRunner ->Tools ->IP Wizard

  8. Linux下JDK、Tomcat

    1.JDK的安装   1. 下载JDK 先查看Linux系统是多少位(32位/64位):getconf  LONG_BIT.再从JDK官网(http://www.oracle.com/technetw ...

  9. Winform GDI+ 相关资料

    在Visual Studio 2010中定义GDI+自定义控件——自定义控件介绍 http://www.cnblogs.com/zhangdong/archive/2010/05/20/1740177 ...

  10. 书单.md

    0823 John Hoskin, An Ilustrated History of Thailand.Asia Books Co., Ltd.2015 0729 Gerald Graff, Cath ...