【HDOJ】4043 FXTZ II
1. 题目描述
有n个球,第i个球的伤害值为$2^i-1, i \in [1,n]$。有甲乙两个人,每次由甲选择n个球中的一个,用它以相同概率攻击自己或者乙,同时彻底消耗这个球。这样的攻击最多进行n次。
一旦甲的伤害值高于乙,则甲输,否则甲胜。问甲胜的概率是多少。
2. 基本思路
还是一步步推导。令dp[k]表示共有k个球时甲胜的概率。
\begin{align}
dp[1] &= \frac{1}{2} \notag \\
dp[2] &= \frac{1}{2} \times \frac{1}{2} \times (1 + dp[1]) \notag \\
dp[3] &= \frac{1}{3} \times \frac{1}{2} \times (1 + dp[1] + dp[2]) \notag \\
dp[4] &= \frac{1}{4} \times \frac{1}{2} \times (1 + dp[1] + dp[2] + dp[3]) \notag \\
&\cdots \notag \\
dp[n] &= \frac{1}{n} \times \frac{1}{2} \times (1 + \Sigma_{i=1}^{n-1}dp[i])
\end{align}
为什么上式成立,以$dp[3] = \frac{1}{3} \times \frac{1}{2} \times (1 + dp[1] + dp[2])$为例解释。
$\frac{1}{3} \times \frac{1}{2}$表示在第k次取到第3个球的概率(该球一定攻击乙),$k \in [1,3]$。
此时,这个球一定属于乙(否则甲必输)并且从此时开始,无论后续的球如何安排,最终都是甲胜。
然而,前k次一定满足甲胜,否则在$[1,k-1]$的某一次中,即停止游戏。
当k=3时,概率为dp[2];
当k=2时,概率为dp[1];
当k=1时,概率为1。
以此类推,dp[n]。
3. 代码
import java.lang.*;
import java.io.*;
import java.util.*;
import java.math.BigInteger; public class Main { public static void main(String[] arg) throws java.lang.Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(in, out);
out.close();
}
} class TaskA {
public final static int maxn = 505;
BigInteger[] FZ = new BigInteger[maxn];
BigInteger[] FM = new BigInteger[maxn]; public TaskA() {
init();
} public void solve(InputReader in, PrintWriter out) {
int t = in.nextInt();
int n; while (t-- > 0) {
n = in.nextInt();
out.println(FZ[n].toString() + "/" + FM[n].toString());
}
} private void init() {
BigInteger sfm = BigInteger.ONE, sfz = BigInteger.ONE;
BigInteger fm, fz;
BigInteger g, lcm; for (int i=1; i<=500; ++i) {
fm = sfm.multiply(BigInteger.valueOf(i*2));
fz = sfz;
g = fz.gcd(fm);
FZ[i] = fz.divide(g);
FM[i] = fm.divide(g);
// System.out.println(fz + "/" + fm); g = sfm.gcd(FM[i]);
sfz = sfz.multiply(FM[i].divide(g))
.add( FZ[i].multiply(sfm.divide(g)) );
sfm = FM[i].divide(g).multiply(sfm);
}
} private BigInteger A(int n, int m) {
BigInteger ret = BigInteger.ONE; for (int i=n; i>n-m; --i)
ret = ret.multiply(BigInteger.valueOf(i)); return ret;
}
} class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer; public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
} public String next() {
while (tokenizer==null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
} public int nextInt() {
return Integer.parseInt(next());
} public long nextLong() {
return Long.parseLong(next());
}
}
【HDOJ】4043 FXTZ II的更多相关文章
- 【动态规划】简单背包问题II
问题 B: [动态规划]简单背包问题II 时间限制: 1 Sec 内存限制: 64 MB提交: 21 解决: 14[提交][状态][讨论版] 题目描述 张琪曼:“为什么背包一定要完全装满呢?尽可能 ...
- 【贪心】时空定位II
[贪心]时空定位II 题目描述 有一块空间,横向长w,纵向长为h,在它的横向中心线上不同位置处装有n(n≤10000)个点状的定位装置,每个定位装置i定位的效果是让以它为中心半径为Ri的圆都被覆盖.请 ...
- 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
- 【Luogu1414】又是毕业季II(数论)
[Luogu1414]又是毕业季II(数论) 题面 题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘 ...
- 【CF687D】Dividing Kingdom II 线段树+并查集
[CF687D]Dividing Kingdom II 题意:给你一张n个点m条边的无向图,边有边权$w_i$.有q个询问,每次给出l r,问你:如果只保留编号在[l,r]中的边,你需要将所有点分成两 ...
- 【leetcode78】Single Number II
题目描述: 给定一个数组,里面除了一个数字,其他的都出现三次.求出这个数字 原文描述: Given an array of integers, every element appears three ...
- hdu 4043 FXTZ II [ 概率 + Java大数]
传送门 FXTZ II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 【机器学习】梯度下降 II
Gradient Descent 梯度下降 II 关于 Gradient Descent 的直观解释,参考上一篇博客[机器学习]梯度下降 I 本模块介绍几种梯度下降模型.定义符号标记如下: \(\th ...
- HDU 4043 FXTZ II (组合数学-排列组合)
FXTZ II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
随机推荐
- 【Winform】 Enum逆向解析
将字符串转换成Enum类型 Enum.Parse:将一个或多个枚举常数的名称或数字值的字符串表示转换成等效的枚举对象. 名称 说明 Parse(Type, String) 将一个或多个枚举常数 ...
- foreach的原理
1.foreach 语句对实现 System.Collections .IEnumerable 或 System.Collections.Generic .IEnumerable <T > ...
- CentOS6.5 MySQL 配置设置总结笔记
三.登录MySQL 登录MySQL的命令是mysql, mysql 的使用语法如下: mysql [-u username] [-h host] [-p[password]] [dbname] u ...
- 使用urllib2的HttpResponse导致内存不回收(内存泄漏)
问题出现环境:python 2.7.1(X)及以下, Windows(或CentOS) 这个问题产生在lib/urllib2.py的line 1174 (python 2.7.1),导致形成了cycl ...
- 【NHibernate】应用层面需要掌握的知识汇总
休息接待区 欢迎加入NHibernate中文社区!在讨论中寻找乐趣!在问题中寻找答案! 旅途站点路线 第一站:熟悉NHibernate NHibernate之旅(1):开篇有益 第二站:接触NHibe ...
- 收录一个简单的css类库
/* CSS liberary */.yahei { font-family: "Microsoft Yahei", "Tahoma", "Si ...
- ASIHTTPRequest的使用(转)
转载自:http://fushengfei.iteye.com/blog/1147112 博客分类: IOS 原文地址:http://wiki.magiche.net/pages/viewpage ...
- Eclipse中设置作者日期等信息
在使用Eclipse 编写Java代码时,自动生成的注释信息都是按照预先设置好的格式生成的,例如其中author 的属性值. 我们可以在Eclipse 中进行设置自己希望显示的信息. 现在看看如何修改 ...
- springmvc整合redis架构搭建实例
新换环境,又有新东西可以学习了,哈皮! 抽空学习之余看了一下redis,个人对Springmvc的爱是忠贞不渝,所以整理了一下Springmvc整合redis的环境搭建.分享学习. 第一步: 创建ma ...
- sqlserver自定义函数【粘】
用户定义自定义函数像内置函数一样返回标量值,也可以将结果集用表格变量返回 用户自定义函数的类型: 标量函数:返回一个标量值 表格值函数{内联表格值函数.多表格值函数}:返回行集(即返回多个值) 1. ...