poj 2891 Strange Way to Express Integers (扩展gcd)
题意:给k对数,每对ai, ri。求一个最小的m值,令m%ai = ri;
分析:由于ai并不是两两互质的, 所以不能用中国剩余定理。
只能两个两个的求。
a1*x+r1=m=a2*y+r2
联立得:a1*x-a2*y=r2-r1;
设r=r2-r2;
互质的模线性方程组m=r[i](mod a[i])。两个方程可以合并为一个,新的a1为lcm(a1,a2),
新的r为关于当前两个方程的解m,然后再和下一个方程合并……。(r2-r1)不能被gcd(a1,a2)整除时无解。 怎么推出的看了好多博客也没有介绍。
下面求最小的解的时候有一个定理,上一篇博客青蛙 也用到了: 对方程 ax ≡ b (mod) n
d = gcd(a,n) 若 d | b 则 有 d 个解 ,最小的解为x0 = (x*(b/d) mod n + n )mod(n/d)
则所有满足方程 x = x0 (mod) (n/d) 的 x 都是原方程的解。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define LL long long
using namespace std; void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if(!b) {d = a; x = ; y = ;}
else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
}
int main()
{
int flag;
LL k, a1, a2, r1, r2;
LL c, d, x, y, q;
while(~scanf("%lld", &k))
{
flag = ;
scanf("%lld%lld", &a1, &r1);
k--;
while(k--)
{
scanf("%lld%lld", &a2, &r2);
if(flag)
continue;
c = r2-r1;
exgcd(a1, a2, d, x, y);
if(c%d!=)
flag = ;
q = a2/d;
x = (x*(c/d)%q + q)%q; //求最小的解
r1 = x*a1 + r1; //令r1为所求值,x;
a1 = a1*a2/d; //令a1为a1a2最小公倍数
}
if(flag)
printf("-1\n");
else
printf("%lld\n", r1);
}
return ;
}
poj 2891 Strange Way to Express Integers (扩展gcd)的更多相关文章
- POJ.2891.Strange Way to Express Integers(扩展CRT)
题目链接 扩展中国剩余定理:1(直观的).2(详细证明). [Upd:]https://www.luogu.org/problemnew/solution/P4774 #include <cst ...
- POJ - 2891 Strange Way to Express Integers (扩展中国剩余定理)
题目链接 扩展CRT模板题,原理及证明见传送门(引用) #include<cstdio> #include<algorithm> using namespace std; ty ...
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- poj——2891 Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 16839 ...
- [POJ 2891] Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 10907 ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)
题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...
- poj 2891 Strange Way to Express Integers【扩展中国剩余定理】
扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...
- POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...
随机推荐
- 使用JAXP进行sax解析
package cn.liuning.sax; import javax.xml.parsers.SAXParser; import javax.xml.parsers.SAXParserFactor ...
- 如何用jmeter对websock和protobuf进行压力测试
1. 一个websocket插件官网地址 https://github.com/maciejzaleski/JMeter-WebSocketSampler 2. 可以用上述插件,也可以自己扩展,以实现 ...
- PHP中应用Service Locator服务定位及单例模式
单例模式将一个对象实例化后,放在静态变量中,供程序调用. 服务定位(ServiceLocator)就是对象工场Factory,调用者对象直接调用Service Locator,与被调用对象减轻了依赖关 ...
- Eclipse 安装热部署JRebel
开发环境 sts-3.7.2.RELEASE 安装步骤 1.打开应市场 2.搜索JRebel并进行下载 3.下载完成后点击JReble Configuation进入
- 【BZOJ】【2594】【WC2006】水管局长数据加强版
LCT 动态维护MST嘛……但是有删边= =好像没法搞的样子 离线记录所有修改&询问,倒序处理,就可以变删边为加边了- 论如何用LCT维护最小生成树:先搞出一棵最小生成树,然后每次加边(u,v ...
- WCF 之 DataContract
在客户端与服务端之间传递的自定义数据类型,格式如下: [DataContract] public class User :IExtensibleDataObject { [DataMember] pu ...
- hdoj 1879 继续畅通工程
继续畅通工程 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- POJ2442Sequence
http://poj.org/problem?id=2442 题意 :就是输入m个数集,每个含n个数,求从每个集合取一个数后,按非降序输出前n小的和. 思路 : 本来打算是用几个for循环的,后来觉得 ...
- Android 判断当前联网的类型 wifi、移动数据流量
先获取系统管理网络连接的Manager: ConnectivityManager connectivityManager = (ConnectivityManager) getSystemServic ...
- java实现大数加法、乘法(BigDecimal)
之前写过用vector.string实现大数加法,现在用java的BigDecimal类,代码简单很多.但是在online-judge上,java的代码运行时间和内存大得多. java大数加法:求a+ ...