Bzoj-2005 能量采集 gcd,递推
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005
题意:题目转换后的模型就是求Σ(gcd(x,y)), 1<=x<=n, 1<=y<=m。。
容易想到n^2logn的方法,ΣΣ(gcd(x,y)*2-1),但是这里会超时,因此我们需要优化。我们令f[d]表示(x,y),1<=x<=n, 1<=y<=m的所有对数中gcd(x,y)=d的个数,那么容易求出所有对数中(x,y)的约数为d的个数为(n/d)*(m/d),然后减去f[i*d],i>=2就行了...
//STATUS:C++_AC_16MS_2052KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End LL f[N];
int n,m; int main(){
freopen("in.txt","r",stdin);
int i,j,low;
LL ans;
scanf("%d%d",&n,&m);
low=Min(n,m);
ans=;
for(i=low;i>;i--){
f[i]=(LL)(n/i)*(m/i);
for(j=i+i;j<=low;j+=i)f[i]-=f[j];
ans+=f[i]*(i*-);
}
printf("%lld\n",ans);
return ;
}
Bzoj-2005 能量采集 gcd,递推的更多相关文章
- BZOJ 2005 能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ 2005 能量采集(容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2005 题意:给定n和m,求 思路:本题主要是解决对于给定的t,有多少对(i,j)满足x= ...
- bzoj 2005 能量采集 莫比乌斯反演
我们要求的是∑ni=1∑mj=1(2×gcd(i,j)−1) 化简得2×∑ni=1∑mj=1gcd(i,j)−n×m 所以我们现在只需要求出∑ni=1∑mj=1gcd(i,j)即可 ∑ni=1∑mj= ...
- 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度
1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...
- BZOJ 3329: Xorequ(数位dp+递推)
传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考 ...
- 洛谷 1447 [NOI2010]能量采集——容斥/推式子
题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...
- bzoj2005 能量采集 gcd 容斥
ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- BZOJ 1177 [Apio2009]Oil(递推)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1177 [题目大意] 给出一个矩阵,从中选出3个k*k且不相交的矩阵,使得其总和最大 [ ...
随机推荐
- 如何通过 OAuth 2.0 使 iOS Apps 集成 LinkedIn 登录功能?
社交网络早已成为人们日常生活的一部分.其实,社交网络也是编程生活的一部分,大多数 App 必须通过某种方式与社交网络交互,传送或接收与用户相关的数据.大多数情况下,用户需要登录某种社交网络,授权 Ap ...
- stl map高效遍历删除的方法
for(:iter!=mapStudent.end():) { if((iter->second)>=aa) { //满足删除条件,删除当前结点,并指 ...
- Windows调试的基石——符号(1)
当应用程序被链接以后,代码被逐一地翻译为一个个的地址,优化以后的代码可能初看起来更是面目全非.每当我们使用vs或者windbg等微软的调试工具进行调试的时候,我们可以方便地使用变量名来查看内存.可以使 ...
- hdu 4664 Triangulation 博弈论
看到这题时,当时还不会做,也没搞懂sg函数,于是狠狠的钻研了下博弈论,渐渐的知道了sg函数…… 现在在来做这题就很容易了,1A 打表容易发现在80左右的时候就出现循环节了 代码如下: #include ...
- [博弈]ZOJ3591 Nim
题意: 给了一串数,个数不超过$10^5$,这串数是通过题目给的一段代码来生成的 int g = S; ; i<N; i++) { a[i] = g; ) { a[i] = g = W; } = ...
- ArcGIS学习记录—dbf shp shx sbn sbx mdb adf等类型的文件的解释
原文地址: ArcGIS问题:dbf shp shx sbn sbx mdb adf等类型的文件的解释 - Silent Dawn的日志 - 网易博客 http://gisman.blog.163.c ...
- python脚本工具 - 4 获取系统当前时间
#! /usr/bin/python import time current_time = time.strftime("%Y-%m-%d %H:%M") print curren ...
- 1316. Electronic Auction(树状数组)
1316 我想说 要不要这么坑 WA了一个小时啊 ,都快交疯了,拿着题解的代码交都WA 最后很无语的觉得题解都错了 重读了N遍题意 发现没读错啊 难道写题解的那个人和我都想错了?? 最后把g++换个C ...
- eclipse 中创建maven web项目
Maven的Eclipse插件m2eclipse在线安装地址 http://m2eclipse.sonatype.org/sites/m2e:我又试了link方式安装也没什么作用,不知怎么回事? 还有 ...
- compass和sass很好的两篇文章
Sass是一种"CSS预处理器",可以让CSS的开发变得简单和可维护.但是,只有搭配Compass,它才能显出真正的威力. 本文介绍Compass的用法.毫不夸张地说,学会了Com ...