题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005

  题意:题目转换后的模型就是求Σ(gcd(x,y)), 1<=x<=n, 1<=y<=m。。

  容易想到n^2logn的方法,ΣΣ(gcd(x,y)*2-1),但是这里会超时,因此我们需要优化。我们令f[d]表示(x,y),1<=x<=n, 1<=y<=m的所有对数中gcd(x,y)=d的个数,那么容易求出所有对数中(x,y)的约数为d的个数为(n/d)*(m/d),然后减去f[i*d],i>=2就行了...

 //STATUS:C++_AC_16MS_2052KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End LL f[N];
int n,m; int main(){
freopen("in.txt","r",stdin);
int i,j,low;
LL ans;
scanf("%d%d",&n,&m);
low=Min(n,m);
ans=;
for(i=low;i>;i--){
f[i]=(LL)(n/i)*(m/i);
for(j=i+i;j<=low;j+=i)f[i]-=f[j];
ans+=f[i]*(i*-);
}
printf("%lld\n",ans);
return ;
}

Bzoj-2005 能量采集 gcd,递推的更多相关文章

  1. BZOJ 2005 能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  2. BZOJ 2005 能量采集(容斥原理)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2005 题意:给定n和m,求 思路:本题主要是解决对于给定的t,有多少对(i,j)满足x= ...

  3. bzoj 2005 能量采集 莫比乌斯反演

    我们要求的是∑ni=1∑mj=1(2×gcd(i,j)−1) 化简得2×∑ni=1∑mj=1gcd(i,j)−n×m 所以我们现在只需要求出∑ni=1∑mj=1gcd(i,j)即可 ∑ni=1∑mj= ...

  4. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  5. BZOJ 3329: Xorequ(数位dp+递推)

    传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考 ...

  6. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  7. bzoj2005 能量采集 gcd 容斥

    ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...

  8. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  9. BZOJ 1177 [Apio2009]Oil(递推)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1177 [题目大意] 给出一个矩阵,从中选出3个k*k且不相交的矩阵,使得其总和最大 [ ...

随机推荐

  1. uva 10154

    dp  记忆化搜索 做的时候像dfs  #include <iostream> #include <cstring> #include <cstdio> #incl ...

  2. MonoBehaviour的事件和具体功能总结

    原地址:http://blog.csdn.net/dingxiaowei2013/article/details/26215577 苦于Visual Studio 2013没有对MonoBehavio ...

  3. Spring+MyBatis实践—MyBatis数据库访问

    关于spring整合mybatis的工程配置,已经在Spring+MyBatis实践—工程配置中全部详细列出.在此,记录一下几种通过MyBatis访问数据库的方式. 通过sqlSessionTempl ...

  4. 荣誉,还是苦逼?| 也议全栈工程师和DevOps

    引言 全栈工程师(本文称「全栈」开发者)和 DevOps 无疑是近期最火的词汇,无论是国外还是国内.而且火爆程度远超于想象. 全栈和 DevOps,究竟是我们的新职业方向,还是仅仅创业公司老板的心头所 ...

  5. glibc库详解及与POSIX,system V这些库之间关系的说明

    自己想了解下关于system v,在网上看到一篇详细的说明,与大家分享一下,原文地址http://hi.baidu.com/tekuba/item/570887775696542e5c178918 以 ...

  6. HDU4612+Tarjan缩点+BFS求树的直径

    tarjan+缩点+树的直径题意:给出n个点和m条边的图,存在重边,问加一条边以后,剩下的桥的数量最少为多少.先tarjan缩点,再在这棵树上求直径.加的边即是连接这条直径的两端. /* tarjan ...

  7. Oracle 学习笔记(一)

    1.连接数据库命令: conn 用户名/密码,当用特权身份连接时,要加上as sysdba 2.修改密码: passw(ord),如果要修改其他人的密码,需要用sys或者system登录 3.显示当前 ...

  8. 91. Decode Ways

    题目: A message containing letters from A-Z is being encoded to numbers using the following mapping: ' ...

  9. socket关闭动作以及socket状态的总结

    主要部分,四次握手: 断开连接其实从我的角度看不区分客户端和服务器端,任何一方都可以调用close(or closesocket)之类的函数开始主动终止一个连接.这里先暂时说正常情况.当调用close ...

  10. WCF的通信

    [ServiceContract]    public interface IContractDemoOne    {        [OperationContract(IsOneWay=true) ...