来源:linux-2.6.30.4/Documentation/arm/Booting ARM Linux

Booting ARM Linux
            =================

Author:    Russell King
Date  : 18 May 2002

The following documentation is relevant to 2.4.18-rmk6 and beyond.

In order to boot ARM Linux, you require a boot loader, which is a small
program that runs before the main kernel.  The boot loader is expected
to initialise various devices, and eventually call the Linux kernel,
passing information to the kernel.

Essentially, the boot loader should provide (as a minimum) the
following:

1. Setup and initialise the RAM.
2. Initialise one serial port.
3. Detect the machine type.
4. Setup the kernel tagged list.
5. Call the kernel image.

1. Setup and initialise RAM
---------------------------

Existing boot loaders:        MANDATORY
New boot loaders:        MANDATORY

The boot loader is expected to find and initialise all RAM that the
kernel will use for volatile data storage in the system.  It performs
this in a machine dependent manner.  (It may use internal algorithms
to automatically locate and size all RAM, or it may use knowledge of
the RAM in the machine, or any other method the boot loader designer
sees fit.)

2. Initialise one serial port
-----------------------------

Existing boot loaders:        OPTIONAL, RECOMMENDED
New boot loaders:        OPTIONAL, RECOMMENDED

The boot loader should initialise and enable one serial port on the
target.  This allows the kernel serial driver to automatically detect
which serial port it should use for the kernel console (generally
used for debugging purposes, or communication with the target.)

As an alternative, the boot loader can pass the relevant 'console='
option to the kernel via the tagged lists specifying the port, and
serial format options as described in

Documentation/kernel-parameters.txt.

3. Detect the machine type
--------------------------

Existing boot loaders:        OPTIONAL
New boot loaders:        MANDATORY

The boot loader should detect the machine type its running on by some
method.  Whether this is a hard coded value or some algorithm that
looks at the connected hardware is beyond the scope of this document.
The boot loader must ultimately be able to provide a MACH_TYPE_xxx
value to the kernel. (see linux/arch/arm/tools/mach-types).

4. Setup the kernel tagged list
-------------------------------

Existing boot loaders:        OPTIONAL, HIGHLY RECOMMENDED
New boot loaders:        MANDATORY

The boot loader must create and initialise the kernel tagged list.
A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE.
The ATAG_CORE tag may or may not be empty.  An empty ATAG_CORE tag
has the size field set to '2' (0x00000002).  The ATAG_NONE must set
the size field to zero.

Any number of tags can be placed in the list.  It is undefined
whether a repeated tag appends to the information carried by the
previous tag, or whether it replaces the information in its
entirety; some tags behave as the former, others the latter.

The boot loader must pass at a minimum the size and location of
the system memory, and root filesystem location.  Therefore, the
minimum tagged list should look:

+-----------+
base ->    | ATAG_CORE |  |
    +-----------+  |
    | ATAG_MEM  |  | increasing address
    +-----------+  |
    | ATAG_NONE |  |
    +-----------+  v

The tagged list should be stored in system RAM.

The tagged list must be placed in a region of memory where neither
the kernel decompressor nor initrd 'bootp' program will overwrite
it.  The recommended placement is in the first 16KiB of RAM.
(比如:我用的是tq2440的板子,内存起始地址是0x30000000,那么taglist建议放在0x30000000~0x30004000范围内,

实际在使用时放在了0x30000100的地方)

5. Calling the kernel image
---------------------------

Existing boot loaders:        MANDATORY
New boot loaders:        MANDATORY

There are two options for calling the kernel zImage.  If the zImage
is stored in flash, and is linked correctly to be run from flash,
then it is legal for the boot loader to call the zImage in flash
directly.

The zImage may also be placed in system RAM (at any location) and
called there.  Note that the kernel uses 16K of RAM below the image
to store page tables.  The recommended placement is 32KiB into RAM.

对于tq2440,zImage被加载到内存的0x30008000的地方,其中将来0x30004000~0x30008000的地址范围被用来存放一级页表,

一级页表的大小固定为16KiB(可以参考《ARM体系结构与编程》P179)。上面建议将zImage放到距离物理内存起始地址偏移32KiB的地方,

对于tq2440,物理内存起始地址是0x30000000,所以zImage应该放到0x30008000处。之前由于不知道这个知识点,尝试将zImage读到小于

0x30008000的地方,发现内核无法启动,但是如果将zImage加载到大于0x30008000的地方是可以启动的,比如0x3000A000,我是这么做的:

由于我在NandFlash中烧写的是uImage(64B+zImage),

 

nand read 0x30009fc0 0x200000 0x300000  (由于NandFlash的0x200000处存放的是uImage,这样的话,正好将zImage加载到0x3000a000处)

go2 0x3000a000  (go2这个命令是我加的,

 

#include <common.h>
#include <command.h> static struct tag *params; static void setup_start_tag(void)
{
params = (struct tag *)0x30000100; params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size (tag_core); params->u.core.flags = ;
params->u.core.pagesize = ;
params->u.core.rootdev = ; params = tag_next (params);
} static void setup_memory_tags(void)
{
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size (tag_mem32); params->u.mem.start = 0x30000000;
params->u.mem.size = **; params = tag_next (params);
} static void setup_commandline_tag(char *cmdline)
{
int len = strlen(cmdline) + ; params->hdr.tag = ATAG_CMDLINE;
params->hdr.size = (sizeof (struct tag_header) + len + ) >> ; strcpy (params->u.cmdline.cmdline, cmdline); params = tag_next (params);
} static void setup_end_tag(void)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = ;
} static int do_go2 (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, rc;
int rcode = ; void (*theKernel)(int zero, int arch, uint params); if (argc < ) {
cmd_usage(cmdtp);
return ;
} addr = simple_strtoul(argv[], NULL, ); printf ("## Starting application at 0x%08lX ...\n", addr);
setup_start_tag();
setup_memory_tags();
/*setup_commandline_tag("noinitrd root=/dev/mtdblock2 rootfstype=yaffs init=/linuxrc mem=64M console=ttySAC0,115200");*/
setup_commandline_tag(getenv("bootargs"));
/*printf("bootargs = %s\n", getenv("bootargs"));*/
setup_end_tag(); /*run_command("nand read 0x30008000 0x200000 0x300000", 0);*/ printf ("##pengdonglin ##\n"); theKernel = (void (*)(int, int, uint))addr; theKernel(, , 0x30000100); /***************/ printf ("## Application terminated, rc = 0x%lX\n", rc);
return rcode;
} /* -------------------------------------------------------------------- */ U_BOOT_CMD(
go2, CONFIG_SYS_MAXARGS, , do_go2,
"start application at address 'addr'",
"addr [arg ...]\n - start application at address 'addr'\n"
" passing 'arg' as arguments"
);

 可以参考韦东山的视频教程。

)


In either case, the following conditions must be met:

- Quiesce all DMA capable devices so that memory does not get
  corrupted by bogus network packets or disk data. This will save
  you many hours of debug.

- CPU register settings
  r0 = 0,
  r1 = machine type number discovered in (3) above.
  r2 = physical address of tagged list in system RAM.

- CPU mode
  All forms of interrupts must be disabled (IRQs and FIQs)
  The CPU must be in SVC mode.  (A special exception exists for Angel)

- Caches, MMUs
  The MMU must be off.
  Instruction cache may be on or off.
  Data cache must be off.

- The boot loader is expected to call the kernel image by jumping
  directly to the first instruction of the kernel image.

Booting ARM Linux的更多相关文章

  1. arm linux kernel 从入口到start_kernel 的代码分析

    参考资料: <ARM体系结构与编程> <嵌入式Linux应用开发完全手册> Linux_Memory_Address_Mapping http://www.chinaunix. ...

  2. 构建 ARM Linux 4.7.3 嵌入式开发环境 —— BusyBox 构建 RootFS

    上一篇我们已经成功将 ARM Linux 4.7.3 的内核利用 U-BOOT 引导了起来.但是细心的你会发现,引导到后面,系统无法启动,出现内核恐慌 (Kernel Panic). 原因是找不到文件 ...

  3. 构建 ARM Linux 4.7.3 嵌入式开发环境 —— U-BOOT 引导 Kernel

    经过若干天的反复测试,搜索.终于成功利用 Qemu 在 u-boot 下引导 ARM Linux 4.7.3 内核.如下详细解释整个构建过程. 准备环境 运行环境:Ubuntu 16.04 需要的虚拟 ...

  4. ARM linux的启动部分源代码简略分析【转】

    转自:http://www.cnblogs.com/armlinux/archive/2011/11/07/2396784.html ARM linux的启动部分源代码简略分析 以友善之臂的mini2 ...

  5. How to build and run ARM Linux on QEMU from scratch

    This blog shows how to run ARM Linux on QEMU! This can be used as a base for later projects using th ...

  6. 引导 ARM Linux

    引导 ARM Linux 本文翻译自:https://www.kernel.org/doc/html/latest/arm/booting.html 引导 ARM Linux 需要一个引导加载程序,它 ...

  7. ARM Linux Qt 5.x.x 无标题栏

    /********************************************************************************* * ARM Linux Qt 5. ...

  8. ARM Linux 3.x的设备树(Device Tree)

    http://blog.csdn.net/21cnbao/article/details/8457546 宋宝华 Barry Song <21cnbao@gmail.com> 1.     ...

  9. ARM Linux启动代码分析

    前言 在学习.分析之前首先要弄明白一个问题:为什么要分析启动代码? 因为启动代码绝大部分都是用汇编语言写的,对于没学过或者不熟悉汇编语言的同学确实有一定难度,但是如果你想真正深入地学习Linux,那么 ...

随机推荐

  1. Java实现中文字符串的排序功能

    package test; /** * * @Title 书的信息类 * @author LR * @version 1.0 * @since 2016-04-21 */ public class B ...

  2. T-SQL 变量

    T-SQL变量 变量的种类: 在T-SQL中,变量按生存范围可以分为全局变量(Global Variable)和局部变量(Local Variable) 1.全局变量是由系统定义的,在整个SQL Se ...

  3. JXTA+JavaFX实现的网络黑白棋测试地址

    http://www.qhdbaobao.com/dist/secondegg-reversi.html ——————————————————————————————————————————————— ...

  4. C# 获取某月的第一天和最后一天

    /// <summary>        /// 取得某月的第一天        /// </summary>        /// <param name=" ...

  5. Hibernate入门(2)- 不用配置用注解

    在上一个例子里面,我用的配置文件的方式,这次改成注解. pom.xml 增加了hibernate-commons-annotations和hibernate-annotations <proje ...

  6. Spring.Scheduling.Quartz的使用

    最近因使用Spring.Net框架而接触.了解到其与Quartz.Net的集成,即Spring.Scheduling.Quartz模块. Spring通过对Quartz.Net的封装,采用了sprin ...

  7. .Net实现的批量删除(使用了repeater控件)

    前台 <asp:Repeater ID="Repeater1" runat="server"> <HeaderTemplate> < ...

  8. HDU2227Find the nondecreasing subsequences(树状数组+DP)

    题目大意就是说帮你给出一个序列a,让你求出它的非递减序列有多少个. 设dp[i]表示以a[i]结尾的非递减子序列的个数,由题意我们可以写出状态转移方程: dp[i] = sum{dp[j] | 1&l ...

  9. mongodb高级操作及在Java企业级开发中的应用

    Java连接mongoDB Java连接MongoDB需要驱动包,个人所用包为mongo-2.10.0.jar.可以在网上下载最新版本. package org.dennisit.mongodb.st ...

  10. Vmware 虚拟的Linux系统如何与宿主主机共享上网

    学校局域网内的机器是经过一个计费登陆客户端Gmon上网的,我前两天刚用Vmware虚拟了一个Linux      Guest OS 用作测试用,在Vmware的VM>>Settings 里 ...