[luogu 1880]石子合并
题目描述
在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
题解
我们目测一个dp方程
设f[i][j]表示i到j合并的最小(大)价值
那么
dp的时候按照区间长度递增来dp
首先最大值,根据单调性 肯定是从
和
转移来的
最小值的时候。这个东西满足四边形不等式
设表示使i~j最优的分界点
首先当时
满足
且
那么枚举中间点的时候只要从枚举到
复杂度证明。。
这样一坨可以两两抓出来消掉
就是这个<=n。复杂度就可证为
这是最小值的做法
#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
#define inf 1001001001
#define infll 1001001001001001001LL
#define ll long long
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
bool f=true;Ri x=0;char ch;while(!isdigit(ch=gc))if(ch=='-')f=false;while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=gc;}return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout); using namespace std;
int n;
int a[2333],s[2333],f[2333][2333],g[2333][2333];
int main(){
n=gi;
for(int i=1;i<=n;i++) a[i]=a[i+n]=gi;
for(int i=1;i<=n+n;i++) s[i]=s[i-1]+a[i];
for(int i=1;i<=n+n;i++) f[i][i]=0,g[i][i]=i;
for(int l=1;l<n;l++)
for(int i=1;i<=2*n-l;i++){
int j=l+i;
f[i][j]=inf/2;
for (int k=g[i][j-1];k<=g[i+1][j];k++)
if (f[i][k-1]+f[k][j]<f[i][j]){
f[i][j]=f[i][k-1]+f[k][j];
g[i][j]=k;
}
f[i][j]+=s[j]-s[i-1];
} int ans=inf;
for(int i=1;i<=n;i++) ans=min(ans,f[i][i+n-1]);
printf("%d\n",ans);
for (int i=1;i<=2*n;i++) f[i][i]=0;
for (int k=1;k<=n-1;k++)
for (int i=1;i<=2*n-k;i++){
int j=i+k;
if (f[i][j-1]>f[i+1][j])
f[i][j]=f[i][j-1]+s[j]-s[i-1];
else
f[i][j]=f[i+1][j]+s[j]-s[i-1];
}
ans=0;
for (int i=1;i<=n;i++) ans=max(ans,f[i][i+n-1]);
printf("%d\n",ans);
return 0;
}
[luogu 1880]石子合并的更多相关文章
- luogu P1880 石子合并
题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- Luogu【P1880】石子合并(环形DP)
先放上luogu的石子合并题目链接 这是一道环形DP题,思想和能量项链很像,在预处理过程中的手法跟乘积最大相像. 用一个m[][]数组来存储石子数量,m[i][j]表示从第 i 堆石子到第 j 堆石子 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- [LUOGU] P1880 [NOI1995]石子合并
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- NOI1995 石子合并 [Luogu P1880]
一道区间dp的模板题,这里主要记一下dp时环形数据的处理. 简略版:方法一:枚举分开的位置,将圈化为链,因此要做n次. 方法二:将链重复两次,即做一个2n-1长度的链,其中第i(i<=n)堆石子 ...
- 经典DP 洛谷p1880 石子合并
https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- RQNOJ 490 环形石子合并
题目链接:https://www.rqnoj.cn/problem/490 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一 ...
- codevs1048 石子合并
题目链接:http://codevs.cn/problem/1048/ 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代 ...
随机推荐
- tslib 移植问题与解决方法
问题一.执行脚本.提示出错,错误有"cann't exec aclocal" ,错误提示最多的是关于aclocal的问题,查资料显示这个文件是automake必备一个文件,好吧,那 ...
- hdu 2501 Tiling_easy version 递推
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2501 题目分析:已知有2*1,2*2,两种型号的瓷砖,要求铺满2*n的格子有多少种方法.可以考虑最左边 ...
- [Silverlight] Visual Studio2010不能安装Silverlight4_Tools,提示语言不一致
今天在装Silverlight4_Tools时出现“必须先安装与 Silverlight Tools 4 语言版本相一致的 Visual Studio 2010.Visual Web Develope ...
- The-ith-Element
Brief: the-ith-element,given a array A with n element , return the i-th element of A. A(n,i) this p ...
- matlab 直方图均衡化
原理: 直方图均衡化首先是一种灰度级变换的方法: 原来的灰度范围[r0,rk]变换到[s0,sk]变换函数为:s=T(r); 为便于实现,可以用查找表(look-up table)的方式存储,即:原始 ...
- 错误解决mysql - Event Scheduler: No data - zero rows fetched, selected, or processed
当遇到一个NOT FOUND(无数据)的警告时,使用一个包含清除警告语句的条件句柄处理,就可以继续处理程序并退出句柄. 这个问题在MySQL5.6.3之后的版本已经解决了,所以该解决方法不是必要的. ...
- 搭建eclipse环境下 Nutch+Mysql 二次开发环境
最近看了下Nutch,目前Nutch最新版本2.3.1,支持Hbase.MongoDB等存储,但在搭建和测试过程中发现对Mysql 的支持好像有点问题. 后来将Nutch版本改为2.2.1.基于Nut ...
- 腾讯微博OAuth2.0 .NET4.0 SDK 发布以及网站腾讯微博登陆示例代码(原创)
1.使用简单方便,包含详细注释: 2.暂时只支持xml格式字符串的转换,建议接口使用xml参数:3.QweiboSDK.Controllers命名空间下已包含所有API接口:4.只需调用到Qweibo ...
- 使用tortoise git管理gitolite版本库
gitolite-admin是用于管理git版本库的版本库,将其从服务器上clone下来. 使用tortoise git clone的时候需要指定私钥,私钥的格式是ppk的,需要使用putty的PUT ...
- nignx+php-fpm环境下 phpmyadmin打开空白的原因探究
打开phpmyadmin一直是空白的,发现是js的问题,原因是pma的js/get_script_js.php读取js不完整 很容易的将问题原因想到了php的输出缓存大小上,我把php.ini里的ou ...