[luogu 1880]石子合并
题目描述
在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
题解
我们目测一个dp方程
设f[i][j]表示i到j合并的最小(大)价值
那么
dp的时候按照区间长度递增来dp
首先最大值,根据单调性 肯定是从
和
转移来的
最小值的时候。这个东西满足四边形不等式
设表示使i~j最优的分界点
首先当时
满足
且
那么枚举中间点的时候只要从枚举到
复杂度证明。。
这样一坨可以两两抓出来消掉
就是这个<=n。复杂度就可证为
这是最小值的做法
#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
#define inf 1001001001
#define infll 1001001001001001001LL
#define ll long long
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
bool f=true;Ri x=0;char ch;while(!isdigit(ch=gc))if(ch=='-')f=false;while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=gc;}return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout); using namespace std;
int n;
int a[2333],s[2333],f[2333][2333],g[2333][2333];
int main(){
n=gi;
for(int i=1;i<=n;i++) a[i]=a[i+n]=gi;
for(int i=1;i<=n+n;i++) s[i]=s[i-1]+a[i];
for(int i=1;i<=n+n;i++) f[i][i]=0,g[i][i]=i;
for(int l=1;l<n;l++)
for(int i=1;i<=2*n-l;i++){
int j=l+i;
f[i][j]=inf/2;
for (int k=g[i][j-1];k<=g[i+1][j];k++)
if (f[i][k-1]+f[k][j]<f[i][j]){
f[i][j]=f[i][k-1]+f[k][j];
g[i][j]=k;
}
f[i][j]+=s[j]-s[i-1];
} int ans=inf;
for(int i=1;i<=n;i++) ans=min(ans,f[i][i+n-1]);
printf("%d\n",ans);
for (int i=1;i<=2*n;i++) f[i][i]=0;
for (int k=1;k<=n-1;k++)
for (int i=1;i<=2*n-k;i++){
int j=i+k;
if (f[i][j-1]>f[i+1][j])
f[i][j]=f[i][j-1]+s[j]-s[i-1];
else
f[i][j]=f[i+1][j]+s[j]-s[i-1];
}
ans=0;
for (int i=1;i<=n;i++) ans=max(ans,f[i][i+n-1]);
printf("%d\n",ans);
return 0;
}
[luogu 1880]石子合并的更多相关文章
- luogu P1880 石子合并
题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- Luogu【P1880】石子合并(环形DP)
先放上luogu的石子合并题目链接 这是一道环形DP题,思想和能量项链很像,在预处理过程中的手法跟乘积最大相像. 用一个m[][]数组来存储石子数量,m[i][j]表示从第 i 堆石子到第 j 堆石子 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- [LUOGU] P1880 [NOI1995]石子合并
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- NOI1995 石子合并 [Luogu P1880]
一道区间dp的模板题,这里主要记一下dp时环形数据的处理. 简略版:方法一:枚举分开的位置,将圈化为链,因此要做n次. 方法二:将链重复两次,即做一个2n-1长度的链,其中第i(i<=n)堆石子 ...
- 经典DP 洛谷p1880 石子合并
https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- RQNOJ 490 环形石子合并
题目链接:https://www.rqnoj.cn/problem/490 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一 ...
- codevs1048 石子合并
题目链接:http://codevs.cn/problem/1048/ 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代 ...
随机推荐
- Linux下DNS服务器的基本搭建
技术交流群:286866978 安装与配置 1. 装载光驱 2. 卸载光驱 3. 将安装包放在合适的文件夹并解压(有的更换光盘需要重新装载) 4. 安装 5. 重定向配置文件 6. 配置named.c ...
- Cocos2d-JS使用CocosDenshion引擎
Cocos2d-JS提供了一个音频CocosDenshion引擎.具体使用的API是cc.AudioEngine.cc.AudioEngine有几个常用的函数:playMusic(url, loop) ...
- JS函数式编程【译】2.2 与函数共舞
- 阿里巴巴2013年实习生笔试题A
一.单项选择题 1.下列说法不正确的是:(B) A.SATA硬盘的速度速度大约为500Mbps/s B.读取18XDVD光盘数据的速度为1Gbps C.前兆以太网的数据读取速度为1Gpbs D.读取D ...
- 转:Android studio Gradle
提高Android Studio中Gradle执行效率 分类: android studio2015-06-26 11:54 2374人阅读 评论(2) 收藏 举报 android studiogra ...
- WPF 类型“System.ComponentModel.ISupportInitialize”在未被引用的程序集中定义。
问题:类型“System.ComponentModel.ISupportInitialize”在未被引用的程序集中定义.必须添加对程序集“System, Version=4.0.0.0, Cultur ...
- mongodb的常用操作
对于nosql之前工作中有用到bekerlydb,最近开始了解mongodb,先简单写下mongodb的一些常用操作,当是个总结: 1.mongodb使用数据库(database)和集合(collec ...
- 启动另外一个activity,并返回结果
欢迎大家光临我的小店:http://clkk.taobao.com 大致步骤: 1.启动另外一个Activity,这里称子Activity: 2.子Activity通过setResult方法设置返回结 ...
- 交换a和b
有点儿类似脑筋急转弯.做个标记先. 网上还看到比较奇特的,一句代码就OK的: 注:要都是int类型才行. 还有比较奇特的: 还有一个:
- Vim自动补全神器:YouCompleteMe
第一次听说这个插件还是在偶然的情况下看到别人的博客,听说了这个插件的大名.本来打算在实训期间来完成安装的,无奈网实在不给力,也就拖到了回家的时候.在开始准备工作的时候就了解到这个插件不是很容易安装,安 ...