区间dp..

dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数.

考虑转移 :

l == r 则 dp( l , r ) = 1 ( 显然 )

s[ l ] == s[ l + 1 ] 则 dp( l , r ) = dp( l + 1 , r )     s[ r ] == s[ r - 1 ] 则 dp( l , r ) = dp( l , r - 1 )  因为只要在涂色时多涂一格就行了, 显然相等 , 所以转移一下之后更好做

s[ l ] == s[ r ] 则 dp( l , r ) = min( dp( l + 1 , r ) , dp( l , r - 1 ) ) 相当于区间 [ l , r ] 被涂上了色 , 这样就可以转移到 dp( l , r - 1 ) 或者 dp( l + 1 , r )

其余的情况 : dp( l , r ) = min( dp( l , k ) + dp( k + 1 , r ) ) ( l <= k < r )

--------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
 
#define rep(i ,n) for(int i=0; i < n; ++i)
#define clr(x ,c) memset(x, c, sizeof(x))
 
using namespace std;
 
const int maxl = 55;
 
int d[maxl][maxl], n;
char goal[maxl];
 
int dp(int l, int r) {
int &t = d[l][r];
if(t != -1) return t;
t = r - l + 1;
if(goal[l] == goal[l + 1]) return t = dp(l + 1, r);
if(goal[r] == goal[r - 1]) return t = dp(l, r - 1);
if(goal[l] == goal[r]) return t = min(dp(l + 1, r), dp(l, r - 1));
for(int k = l; k < r; k++)
   t = min(t, dp(l, k) + dp(k + 1, r));
return t;
}
  
int main(){
freopen( "test.in" , "r" , stdin );
clr(d, -1);
scanf("%s", goal);
n = strlen(goal);
rep(i, n) d[i][i] = 1;
printf("%d\n", dp(0, n - 1));
return 0;

--------------------------------------------------------------------------

1260: [CQOI2007]涂色paint

Time Limit: 30 Sec  Memory Limit: 64 MB
Submit: 818  Solved: 496
[Submit][Status][Discuss]

Description

假设你有一条长度为5的木版,初始时没有涂过任何颜色。你希望把它的5个单位长度分别涂上红、绿、蓝、绿、红色,用一个长度为5的字符串表示这个目标:RGBGR。 每次你可以把一段连续的木版涂成一个给定的颜色,后涂的颜色覆盖先涂的颜色。例如第一次把木版涂成RRRRR,第二次涂成RGGGR,第三次涂成RGBGR,达到目标。 用尽量少的涂色次数达到目标。

Input

输入仅一行,包含一个长度为n的字符串,即涂色目标。字符串中的每个字符都是一个大写字母,不同的字母代表不同颜色,相同的字母代表相同颜色。

Output

仅一行,包含一个数,即最少的涂色次数。

Sample Input

Sample Output

【样例输入1】
AAAAA

【样例输入1】
RGBGR

【样例输出1】
1

【样例输出1】
3

HINT

40%的数据满足:1<=n<=10
100%的数据满足:1<=n<=50

Source

BZOJ 1260: [CQOI2007]涂色paint( 区间dp )的更多相关文章

  1. [BZOJ 1260][CQOI2007]涂色paint 题解(区间DP)

    [BZOJ 1260][CQOI2007]涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为 ...

  2. 【DP】BZOJ 1260: [CQOI2007]涂色paint

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 893  Solved: 540[Submit][Stat ...

  3. [BZOJ1260][CQOI2007]涂色paint 区间dp

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 1575  Solved: 955 [Submit][S ...

  4. BZOJ 1260 [CQOI2007]涂色paint(区间DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1260 [题目大意] 假设你有一条长度为n的木版,初始时没有涂过任何颜色 每次你可以把一 ...

  5. BZOJ 1260: [CQOI2007]涂色paint【区间DP】

    Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续 ...

  6. 1260. [CQOI2007]涂色【区间DP】

    Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续 ...

  7. 【bzoj1260】[CQOI2007]涂色paint 区间dp

    题目描述 给出一个序列,每次可以给一段染成同一种颜色,问最少要染多少次能够染成给定方案. 输入 输入仅一行,包含一个长度为n的字符串,即涂色目标.字符串中的每个字符都是一个大写字母,不同的字母代表不同 ...

  8. B1260 [CQOI2007]涂色paint 区间dp

    这个题和我一开始想的区别不是很大,但是要我独自做出来还是有一些难度. 每一次涂色 只有这两种可能: 1) 把一段未被 覆盖过的区间 涂成 * 色 2) 把一段被一种颜色覆盖的区间涂成 * 色 (并且 ...

  9. CQOI2007 涂色 paint (区间dp)

    听说这道题是当年省选题 于是兴致勃勃拿来做了做 至于如何想到思路... 事实上没想象中那么简单... 脑阔挺疼的... (一开始都没看出来是区间dp) 想到可以区间dp,然后就似乎没啥大问题 枚举区间 ...

随机推荐

  1. JS实现日历控件选择后自动填充

    最近在做人事档案的项目,在做项目的初期对B/S这块不是很熟悉,感觉信心不是很强,随着和师哥同组人员的交流后发现,调试程序越来越好了,现在信心是倍增,只要自己自己踏实的去研究.理解代码慢慢的效果就出来了 ...

  2. phpmyadmin出现空password登录被禁止

    在Windows或者Linux下mysql安装后默认的password为空,又当我们又安装了mysql的管理工具 phpmyadmin后登陆时出现"空password登陆呗禁止(參见同意pa ...

  3. 【Android病毒分析报告】 - ZxtdPay 吸费恶魔

    本文章由Jack_Jia编写,转载请注明出处.  文章链接:http://blog.csdn.net/jiazhijun/article/details/11581543 作者:Jack_Jia    ...

  4. C++ 函数映射使用讲解

    想想我们在遇到多语句分支时是不是首先想到的是 switc case 和 if else if ... 这2种方式在编码方面确实简单少,但是当分支达到一定数量后,特别是分支内部有嵌套大段代码或者再嵌套分 ...

  5. poj2492 A Bug's Life【基础种类并查集】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4298148.html   ---by 墨染之樱花 题目链接:http://poj.org/pr ...

  6. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. FFTW程序Demo

    #include<stdio.h> #include<stdlib.h> #include <fftw3.h> #include<string.h> # ...

  8. HTML5 DTD

    HTML5/HTML 4.01/XHTML 元素和有效的 DTD 下面的表格列出了所有的 HTML5/HTML 4.01/XHTML 元素,以及它们会出现在什么文档类型 (DTD) 中: 标签 HTM ...

  9. 两台linux机器时间同步

    Linux自带了ntp服务 -- /etc/init.d/ntpd,这个服务不仅可以设置让本机和某台/某些机器做时间同步,他本身还可以扮演一个time server的角色,让其他机器和他同步时间. 配 ...

  10. Spring Boot特性(转)

    摘要: 1. SpringApplication SpringApplication 类是启动 Spring Boot 应用的入口类,你可以创建一个包含 main() 方法的类,来运行 SpringA ...