求LIS , 然后用 n 减去即为answer

----------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
 
#define rep( i , n ) for( int i = 0 ;  i < n ; ++i )
#define clr( x , c ) memset( x , c , sizeof( x ) )
 
using namespace std;
 
const int maxn = 30000 + 5;
const int inf = 0x3f3f3f3f;
 
int num[ maxn ];
 
int d[ maxn ] , g[ maxn ];
 
int main() {
// freopen( "test.in" , "r" , stdin );
int n;
cin >> n;
rep( i , n ) 
   scanf( "%d" , num + i );
   
clr( g , inf );
int ans = 0;
rep( i , n ) {
int t = upper_bound( g , g + n , num[ i ] ) - g;
g[ t ] = num[ i ];
ans = max( t + 1 , ans );
}
clr( g , inf );
for( int i = n - 1 ; i >= 0 ; i-- ) {
int t = upper_bound( g , g + n , num[ i ] ) - g;
g[ t ] = num[ i ];
ans = max( t + 1 , ans );
}
cout << n - ans << "\n";
return 0;
}

----------------------------------------------------------------------------

1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 1068  Solved: 638
[Submit][Status][Discuss]

Description

为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。 第i头奶牛有一张标明她用餐批次D_i(1 <= D_i <= 3)的卡片。虽然所有N(1 <= N <= 30,000)头奶牛排成了很整齐的队伍但谁都看得出来,卡片上的号码是完全杂乱无章的。 在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列,例如111222333或者333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。 你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。

Input

第1行: 1个整数:N 第2..N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次D_i

Output

第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子

Sample Input

5
1
3
2
1
1
输入说明:

队列中共有5头奶牛,第1头以及最后2头奶牛被设定为第一批用餐,第2头奶牛的预设是第三批用餐,第3头则为第二批用餐。

Sample Output

1

输出说明:

如果FJ想把当前队列改成一个不下降序列,他至少要改2头奶牛的编号,一种可行的方案是:把队伍中2头编号不是1的奶牛的编号都改成1。不过,如果FJ选择把第1头奶牛的编号改成3就能把奶牛们的队伍改造成一个合法的不上升序列了。

HINT

Source

BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )的更多相关文章

  1. Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1272  Solve ...

  2. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...

  3. BZOJ 1609 [Usaco2008 Feb]Eating Together麻烦的聚餐:LIS & LDS (nlogn)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1609 题意: 给你一个只由数字"1,2,3"组成的序列a[i],共n个 ...

  4. bzoj 1609[Usaco2008 Feb]Eating Together麻烦的聚餐【dp】

    设up[i][j]为第i位升序为j的最小修改数,down为降序 #include<iostream> #include<stdio.h> using namespace std ...

  5. 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1010  Solv ...

  6. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐(dp+被坑)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1609 首先我不得不说,我被这题坑了.题目前边没有说可以不需要3种牛都有啊!!!!!!!!然后我一直在 ...

  7. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    [算法]动态规划 [题解]DP有个特点(递推的特点),就是记录所有可能状态然后按顺序转移. 最优化问题中DP往往占据重要地位. f[i][j]表示前i头奶牛,第i头改为号码j的最小改动数字,这样每头奶 ...

  8. BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 938  Solved ...

  9. [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

随机推荐

  1. GC(Garbagecollection)垃圾回收

    在前面向大家讲解FTL时,我们提到了GC的操作,所谓GC就是把一个闪存块里的‘有效’页数据复制到一个‘空白’块里,然后把这个块完全擦除.GC是SSD里的一个非常关键的操作,其效率对性能有决定性影响.闪 ...

  2. http 响应头之location

    <pre name="code" class="html">jrhmpt01:/root# cat login_yylc.pl use LWP::U ...

  3. Codeforces 703D Mishka and Interesting sum(树状数组+扫描线)

    [题目链接] http://codeforces.com/contest/703/problem/D [题目大意] 给出一个数列以及m个询问,每个询问要求求出[L,R]区间内出现次数为偶数的数的异或和 ...

  4. Home | eMine: Web Page Transcoding Based on Eye Tracking Project Page

    Home | eMine: Web Page Transcoding Based on Eye Tracking Project Page The World Wide Web (web) has m ...

  5. 利用KVC实现无需协议的委托模式

    在<精通iOS开发>一书中看到的技巧.假设BIDTaskListController是一个列表,点击列表上的一项将会导航到BIDTaskDetailController,在BIDTaskD ...

  6. STL中主要的算法(一)

    一.replace() 替换算法将指定元素值替换为新值,使用原型例如以下,将迭代器[first,last)中值为old_value的元素所有替换为new_value值. 函数原型: template  ...

  7. [C# 基础知识系列]专题六:泛型基础篇——为什么引入泛型

    引言: 前面专题主要介绍了C#1中的2个核心特性——委托和事件,然而在C# 2.0中又引入一个很重要的特性,它就是泛型,大家在平常的操作中肯定会经常碰到并使用它,如果你对于它的一些相关特性还不是很了解 ...

  8. C++ signal的使用

    1.头文件 #include  <signal.h> 2.功能 设置某一信号的对应动作 3.函数原型 typdef  void  (*sighandler_t )(int); sighan ...

  9. HTML技术简介

    1.DHTML:"Dynamic HTML"动态HTML技术的简称.DHTML并不是一项新技术,而是HTML,CSS,JavaScript技术组合的术语.DHTML背后的含义是: ...

  10. Microsoft SQL Server 数据库 错误号大全

    panchzh :Microsoft SQL Server 数据库 错误号大全0 操作成功完成. 1 功能错误. 2 系统找不到指定的文件. 3 系统找不到指定的路径. 4 系统无法打开文件. 5 拒 ...