求LIS , 然后用 n 减去即为answer

----------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
 
#define rep( i , n ) for( int i = 0 ;  i < n ; ++i )
#define clr( x , c ) memset( x , c , sizeof( x ) )
 
using namespace std;
 
const int maxn = 30000 + 5;
const int inf = 0x3f3f3f3f;
 
int num[ maxn ];
 
int d[ maxn ] , g[ maxn ];
 
int main() {
// freopen( "test.in" , "r" , stdin );
int n;
cin >> n;
rep( i , n ) 
   scanf( "%d" , num + i );
   
clr( g , inf );
int ans = 0;
rep( i , n ) {
int t = upper_bound( g , g + n , num[ i ] ) - g;
g[ t ] = num[ i ];
ans = max( t + 1 , ans );
}
clr( g , inf );
for( int i = n - 1 ; i >= 0 ; i-- ) {
int t = upper_bound( g , g + n , num[ i ] ) - g;
g[ t ] = num[ i ];
ans = max( t + 1 , ans );
}
cout << n - ans << "\n";
return 0;
}

----------------------------------------------------------------------------

1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 1068  Solved: 638
[Submit][Status][Discuss]

Description

为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。 第i头奶牛有一张标明她用餐批次D_i(1 <= D_i <= 3)的卡片。虽然所有N(1 <= N <= 30,000)头奶牛排成了很整齐的队伍但谁都看得出来,卡片上的号码是完全杂乱无章的。 在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列,例如111222333或者333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。 你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。

Input

第1行: 1个整数:N 第2..N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次D_i

Output

第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子

Sample Input

5
1
3
2
1
1
输入说明:

队列中共有5头奶牛,第1头以及最后2头奶牛被设定为第一批用餐,第2头奶牛的预设是第三批用餐,第3头则为第二批用餐。

Sample Output

1

输出说明:

如果FJ想把当前队列改成一个不下降序列,他至少要改2头奶牛的编号,一种可行的方案是:把队伍中2头编号不是1的奶牛的编号都改成1。不过,如果FJ选择把第1头奶牛的编号改成3就能把奶牛们的队伍改造成一个合法的不上升序列了。

HINT

Source

BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )的更多相关文章

  1. Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1272  Solve ...

  2. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...

  3. BZOJ 1609 [Usaco2008 Feb]Eating Together麻烦的聚餐:LIS & LDS (nlogn)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1609 题意: 给你一个只由数字"1,2,3"组成的序列a[i],共n个 ...

  4. bzoj 1609[Usaco2008 Feb]Eating Together麻烦的聚餐【dp】

    设up[i][j]为第i位升序为j的最小修改数,down为降序 #include<iostream> #include<stdio.h> using namespace std ...

  5. 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1010  Solv ...

  6. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐(dp+被坑)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1609 首先我不得不说,我被这题坑了.题目前边没有说可以不需要3种牛都有啊!!!!!!!!然后我一直在 ...

  7. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    [算法]动态规划 [题解]DP有个特点(递推的特点),就是记录所有可能状态然后按顺序转移. 最优化问题中DP往往占据重要地位. f[i][j]表示前i头奶牛,第i头改为号码j的最小改动数字,这样每头奶 ...

  8. BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 938  Solved ...

  9. [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

随机推荐

  1. JavaScript 鸭子模型

    Javascript:由 “鸭子类型” 得出来的推论 背景 学动态语言的都知道一句话:“如果它走起来像鸭子,而且叫起来像鸭子,那么它就是鸭子”,Javascript也支持鸭子类型,下文就说说鸭子类型在 ...

  2. es5 api

    ES5 Object.create(prototype, descriptors) //创建对象 var o1 = {foo:'bar'}; var o2 = new Object(); //Obje ...

  3. protel99与win7兼容问题的解决方案

    一些用户大概都已经把自己的 PC 从 winXP 换到了 win7,在 win7 给我们带来的视觉上的冲击和功能上的更换.也不时的带来了各方面的软件兼容问题 ,而一般上的兼容都可以在 win7 的自动 ...

  4. Centos系统mysql 忘记root用户的密码:

    第一步:(停掉正在运行的mysql) [root@maomao ~]# service mysqld stop  Stopping MySQL:                             ...

  5. proguard混淆jar文件

    Proguard是个优秀的java混淆工具,使用示例如下,一个java工程对外接口代码如下(无需混淆) package com.ciaos.open; import com.ciaos.inner.I ...

  6. MD5的加密和解密(总结)

    效果图例如以下: package com.test; import java.security.MessageDigest; public class MD5 { // MD5加码.32位 publi ...

  7. 度小于所述过程:es.exe

    在防火墙管理,见未知的过程"es.exe" 程序信息: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGVzdGNzX2Ru/font ...

  8. Windows下Oracle服务介绍

    如图,截取的是11gR2下RAC其中一个节点的Oracle服务列表. oracle在处理一般事务时并不需要全部启动其后台的所有服务由于oracle服务所占用系统资源比较大,一般情况下,对于单实例的OR ...

  9. SSIS Package 配置多数据库连接语句

  10. Filter 字符编码Filter 一

    使用字符编码Filter package com.helloweenvsfei.filter; import java.io.IOException; import javax.servlet.Fil ...