题目链接:http://acm.swust.edu.cn/problem/0166/

Time limit(ms): 5000      Memory limit(kb): 65535
 

有如下方程组: A1*x1^3+A2*x2^3+A3*x3^3+A4*x4^3+A5*x5^3=0,其中A1…A5都在[-50,50]内。 如果(x1,x2,x3,x4,x5)(其中-50<=xi<=50,xi!=0)能让该等式成立,就说(x1,x2,x3,x4,x5)为其一组解,现在的问题是要问你该等式共有多少组解。

Description

输入包括5个系数 A1,A2,A3,A4,A5

注意:这里是多组输入哈,太坑爹了!

Input

输出该方程解的数目

Output
1
23 45 36 13 57
Sample Input
1
1436
 
 
解题思路:明显的hash,但是想了想,这里的系数[-50,50],x范围[-50,50],
     那么求得的解的变换范围为[-12500000,12500000]数组大小25000000(内存直接爆了)
     表示智商捉急~~然后晓得了还有short 这个东东(http://bbs.csdn.net/topics/370037447
     然后卡到内存ac了
代码如下:
 #include <stdio.h>
#include <string.h>
#define maxn 25000010
short hash[maxn];
int main(){
int a[], x1, x2, x3, x4, x5, cnt, temp;
while (scanf("%d%d%d%d%d", &a[], &a[], &a[], &a[], &a[]) != EOF){
cnt = ;
memset(hash, , sizeof(hash));
for (x1 = -; x1 <= ; x1++){
if (x1){
for (x2 = -; x2 <= ; x2++){
if (x2){
temp = a[] * x1*x1*x1 + a[] * x2*x2*x2;
if (temp<)
temp += maxn;
hash[temp]++;
}
}
}
}
for (x3 = -; x3 <= ; x3++){
if (x3){
for (x4 = -; x4 <= ; x4++){
if (x4){
for (x5 = -; x5 <= ; x5++){
if (x5){
temp = -(a[] * x3*x3*x3 + a[] * x4*x4*x4 + a[] * x5*x5*x5);
if (temp<)
temp += maxn;
if (hash[temp])
cnt += hash[temp];
}
}
}
}
}
}
printf("%d\n", cnt);
}
return ;
}

但是发现有人低内存ac了,然后,然后,把每次求得的值MOD一个数,然后~~~(智商啊)

 #include <stdio.h>
#include <math.h>
#include <string.h>
#define maxn 200005
int hash[maxn][], num[maxn];
int main(){
int i, j, k, l, cnt, tmp, mark, a[];
while (~scanf("%d%d%d%d%d", &a[], &a[], &a[], &a[], &a[])){
memset(num, , sizeof(num));
cnt = ;
for (i = -; i <= ; i++){
if (i){
for (j = -; j <= ; j++){
if (j){
tmp = a[] * i*i*i + a[] * j*j*j;
mark = abs(tmp) % maxn;
hash[mark][num[mark]] = tmp;
num[mark]++;
}
}
}
}
for (i = -; i <= ; i++){
if (i){
for (j = -; j <= ; j++){
if (j){
for (k = -; k <= ; k++){
if (k){
tmp = a[] * i*i*i + a[] * j*j*j + a[] * k*k*k;
mark = abs(tmp) % maxn;
for (l = ; l < num[mark]; l++)
if (tmp == hash[mark][l]) cnt++;
}
}
}
}
}
}
printf("%d\n", cnt);
}
return ;
}

[Swust OJ 166]--方程的解数(hash法)的更多相关文章

  1. POJ 1186 方程的解数

    方程的解数 Time Limit: 15000MS   Memory Limit: 128000K Total Submissions: 6188   Accepted: 2127 Case Time ...

  2. [Swust OJ 404]--最小代价树(动态规划)

    题目链接:http://acm.swust.edu.cn/problem/code/745255/ Time limit(ms): 1000 Memory limit(kb): 65535   Des ...

  3. NOI2001 方程的解数

    1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛  时间限制: 5 s  空间限制: 64000 KB     题目描述 Descripti ...

  4. cogs 304. [NOI2001] 方程的解数(meet in the middle)

    304. [NOI2001] 方程的解数 ★★☆   输入文件:equation1.in   输出文件:equation1.out   简单对比时间限制:3 s   内存限制:64 MB 问题描述 已 ...

  5. P5691 [NOI2001]方程的解数

    题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...

  6. [Swust OJ 649]--NBA Finals(dp,后台略(hen)坑)

    题目链接:http://acm.swust.edu.cn/problem/649/ Time limit(ms): 1000 Memory limit(kb): 65535 Consider two ...

  7. 计蒜客 方程的解数 dfs

    题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...

  8. [ NOI 2001 ] 方程的解数

    \(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...

  9. NTC热敏电阻温度计算方法,Steinhart-Hart方程和B值法(转)

    NTC热敏电阻计算器使用方法 NTC热敏电阻计算器 V1.0 10K负温度系数热敏电阻(NTC)温度与阻值对应关系表 Rt = R(25℃)*EXP[B*(1/T - 1/(T+25))] 说明: 1 ...

随机推荐

  1. HDU2005-第几天

    描述: 给定一个日期,输出这个日期是该年的第几天. 代码: #include<stdio.h> #include<string.h> #include<iostream& ...

  2. ThinkPHP第十九天(Ueditor高亮插件、扩展函数载入load、静态缓存)

    1.使用Ueditor编辑器,插入代码后,显示的时候高亮显示,需要调用Ueditor中的第三方插件third-party中的SyntaxHighlighter 调用方法: 引入CSS和JS文件,并调用 ...

  3. FPGA工程中用C语言对文件进行处理_生成mif文件

    本博客中有用verilog处理文件数据的代码,本博文采用C 处理文件中的数据. 有时候要生成一个mif文件—— altera memory  initial file.本次工程中我得到的是一个大型的数 ...

  4. MVC-07 案例1

    >>>>>ContosoUniversity网站 ------------------------------------------- 一.并发冲突 1. 为什么会并发 ...

  5. hdu1395-2^x mod n = 1

    http://acm.hdu.edu.cn/showproblem.php?pid=1395 原理为 a ^ b % n == d ; >>>>>>  (( a % ...

  6. IE浏览器下<A>标签不能显示背景图片

    修改前 background: url('./img/active/legendBg.png')no-repeat 修改后 background: url('./img/active/legendBg ...

  7. 快速构建ASP.NET MVC Admin主页

    前言 后台开发人员一般不喜欢调样式,搞半天样式出不来,还要考虑各种浏览器兼容,费心费力不讨好,还好互联网时代有大量的资源共享,避免我们从零开始,现在就来看怎么快速构建一个ASP.NET MVC后台管理 ...

  8. Oracle_sqlload导数案例

    文件地址:http://115.com/lb/5lbbut5jc6op 案例中的sql_load导数公用到5个文件,分别是bat.ctl.txt.log.bad 5个文件 bat文件: --用户名/用 ...

  9. linux驱动调试--段错误之oops信息分析

    linux驱动调试--段错误之oops信息分析 http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=29401328&id= ...

  10. opencv第一站:配置opencv环境(2015-12-12)

    今天论坛申请的书< OpenCV 计算机视觉编程攻略(中国工信出版社)>到了,准备研究研究机器视觉. 晚上安装了 vc2008 及 opencv 最新版 3.0.0,试了各种配置都是错误提 ...