Nearest Common Ancestors

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 18136   Accepted: 9608

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

 
题意:构建一棵树并给你一个询问,求这两个点的最近公共祖先。
题解:此题数据很水,暴力可过,tarjan最佳。
代码如下:
 #include <cstdio>
#include <cstring>
#include <vector>
using namespace std; const int LEN = ; vector<int> vec[LEN];
int uset[LEN];
bool vis[LEN];
bool root[LEN]; void init(int n)
{
for(int i = ; i <= n; i++)
vec[i].clear();
} void makeset(int n)
{
uset[n] = n;
} int findset(int x)
{
return x == uset[x] ? x : uset[x] = findset(uset[x]);
} void unionset(int x, int y) //并查集操作
{
x = findset(x);
y = findset(y);
if (x == y)
return;
uset[y] = x;
} void LCA(int u, int q1, int q2)
{
int v;
makeset(u);
for(int i = ; i < vec[u].size(); i++){
v = vec[u][i];
LCA(v, q1, q2);
unionset(u, v); //后续遍历并合并集合
}
vis[u] = true;
if (u == q1 && vis[q2] == true){ //如果访问到询问点,判断另外一个点是否被访问过,如果访问过则该点为最近公共祖先
printf("%d\n", findset(q2));
return;
}
else if (u == q2 && vis[q1] == true){
printf("%d\n", findset(q1));
return;
} } int main()
{
int T, n, a, b, q1, q2;
scanf("%d", &T);
while(T--){
memset(uset, , sizeof(uset));
memset(vis, , sizeof(vis));
memset(root, , sizeof(root));
scanf("%d", &n);
init(n);
for(int i = ; i < n - ; i++){
scanf("%d %d", &a, &b);
vec[a].push_back(b);
root[b] = true; //标注非根节点
}
scanf("%d %d", &q1, &q2);
for(int i = ; i <= n; i++)
if (root[i] != true){ //从根节点开始遍历
LCA(i, q1, q2);
break;
}
}
return ;
}

【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)的更多相关文章

  1. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  2. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  3. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  4. poj 1330 Nearest Common Ancestors 求最近祖先节点

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37386   Accept ...

  5. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  6. POJ 1330 Nearest Common Ancestors (模板题)【LCA】

    <题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

随机推荐

  1. 关于521(nyoj)

    关于521 点击这里 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 Acm队的流年对数学的研究不是很透彻,但是固执的他还是想一头扎进去. 浏览网页的流年忽然看到了网上有 ...

  2. jquery load(URL,FUNCTION(){}) 异步加载页面

    $("#btnSearch").click(function () { var queryUrl = '/Report/LoadInsClassifFileNew'; if ($( ...

  3. Net Core WebApi单元测试

    单元测试 本篇将结合这个系列的例子的基础上演示在Asp.Net Core里如何使用XUnit结合Moq进行单元测试,同时对整个项目进行集成测试. 第一部分.XUnit 修改 Project.json  ...

  4. 轻松背后的N+疲惫——系统日志

    相信很多coder都有这样的癖好:“自恋”!!对自己编写的code总是那么的自信,自豪,Always believe it to be so perfect!! 不喜欢做单元测试(总觉得它就那样了能出 ...

  5. Delphi调用安装驱动sys的单元

    unit SysDriver; interface uses windows, winsvc; // jwawinsvc; Type TSysDriver = class(TObject) priva ...

  6. android邮件发送几种方式

    android中发送邮件我大概发现了3种,代码如下 package src.icetest; import org.apache.commons.mail.EmailException; import ...

  7. html类,id规范命名

    DIV+CSS的命名规则 SEO(搜索引擎优化)有很多工作要做,其中对代码的优化是一个很关键的步骤.为了更加符合SEO的规范,下面中部IT网将对目前流行的CSS+DIV的命名规则整理如下: 页头:he ...

  8. MyEclipse中新建JSP(Advanced Template)文件时自动生成的

    <meta http-equiv="pragma" content="no-cache"> <meta http-equiv="ca ...

  9. python 魔法方法之:__getitem__ __setitem__ __delitem__

    h2 { color: #fff; background-color: #7CCD7C; padding: 3px; margin: 10px 0px } h3 { color: #fff; back ...

  10. 浅析jquery中attr属性和prop属性的区别

    最近在做项目的时候,发现到了prop这个属性,然后之前一直使用的是attr属性,觉得感觉上都差不多,jQuery也不可能专门做了两个相同的属性撒.所以就结合这两个属性研究了一下,也谈谈我对他们最简单最 ...