意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error

输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中最多有两个 那么就非常easy了 遇到字母直接入栈  遇到反括号计算后入栈  然后就得到结果了

#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N = 1000;
int st[N], row[N], col[N], r[N], c[N]; int main()
{
int n, ans, top;
scanf("%d", &n);
char na[3], s[N];
for(int i = 1; i <= n; ++i)
{
scanf("%s", na);
int j = na[0] - 'A';
scanf("%d%d", &row[j], &col[j]);
} while(~scanf("%s", &s))
{
int i;
for(i = 0 ; i < 26; ++i)
c[i] = col[i], r[i] = row[i];
ans = top = 0; for(i = 0; s[i] != '\0'; ++i)
{
if(isalpha(s[i]))
{
int j = s[i] - 'A';
st[++top] = j;
} else if(s[i] == ')')
{
if(r[st[top]] != c[st[top - 1]]) break;
else
{
--top;
c[st[top]] = c[st[top + 1]];
ans += (r[st[top]] * c[st[top]] * r[st[top + 1]]);
}
}
}
if(s[i] == '\0') printf("%d\n", ans);
else printf("error\n");
}
return 0;
}

 Matrix Chain Multiplication 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary.
However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n (  ),
representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices.
Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000

UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)的更多相关文章

  1. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  2. UVA - 442 Matrix Chain Multiplication(栈模拟水题+专治自闭)

    题目: 给出一串表示矩阵相乘的字符串,问这字符串中的矩阵相乘中所有元素相乘的次数. 思路: 遍历字符串遇到字母将其表示的矩阵压入栈中,遇到‘)’就将栈中的两个矩阵弹出来,然后计算这两个矩阵的元素相乘的 ...

  3. UVa 442 Matrix Chain Multiplication(栈的应用)

    题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...

  4. stack UVA 442 Matrix Chain Multiplication

    题目传送门 题意:给出每个矩阵的行列,计算矩阵的表达式,如果错误输出error,否则输出答案 分析:表达式求值,stack 容器的应用:矩阵的表达式求值A 矩阵是a * b,B 矩阵是b * c,则A ...

  5. UVA442 Matrix Chain Multiplication 矩阵运算量计算(栈的简单应用)

    栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到) ...

  6. 例题6-3 Matrix Chain Multiplication ,Uva 442

    这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...

  7. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  8. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  9. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

随机推荐

  1. Java中取某一个范围的随机数

    一.取模操作 public static void main(String[] args) { for (int i = 1; i <= 20; i++) { int j = i % 11; S ...

  2. delphi 怎么将一个文件流转换成字符串(String到流,String到文件,相互转化)

    //from   http://kingron.myetang.com/zsfunc0d.htm (*//   标题:充分利用pascal字符串类型   说明:和PChar不同,string可以保存# ...

  3. django url调度

    Django的url配置相同遵循着DRY(dont repeat yourself)的规则.下面都是官方文档的样例: 首先介绍的是Django怎样处理http的请求: 1.在setting里定义ROO ...

  4. Cocos2d-x layout (二)

    相对某个控件进行布局 Size widgetSize = Director::getInstance()->getWinSize(); Text* alert = Text::create(&q ...

  5. C#数学运算表达式解释器

    C#数学运算表达式解释器 測试文件内容: a=2+3*2; b=2*(2+3); 浏览按钮事件处理程序: private void button_browse_Click(object sender, ...

  6. span标签可以使用hide()方法隐藏吗?

    /获取li下的span var $span = $('ul.selector li span'); //span对象隐藏 $span.hide(); //或者 $span.css('display', ...

  7. “HTTP 错误 401.1 - 未授权:登录失败” iis配置和权限问题

    今天,将项目发布到IIS服务器上,出现此问题,本地IIS访问正常. 登录失败说明根本登录不了,谈何访问网页,所以要从两方面下手,一.账户:二.账户权限: 一.设置你网站属性的时候,目录安全性-匿名访问 ...

  8. HDOJ 4862 Jump

    K路径覆盖问题,最小费用最大流.... ,费用0,Y部有N*M个节点,每一个节点向汇点连一条边,流量1,费用0,假设X部的节点x能够在一步之内到达Y部的节点y,那么就连边x->y,费用为从x格子 ...

  9. BT5 firefox Flash插件问题

    今天在BT下安装了Nessus,好不容易安装好了,注册成功,本以为大功告成,但是在最后关头,却出现一个“未安装flash插件”错误,在bT下尝试着安装flahs插件,蛋碎一地,,,没能解决. 我的BT ...

  10. Spark简述及基本架构

    Spark简述 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台.它立足 于内存计算.从多迭代批量处理出发,兼收并蓄数据仓库.流处理和图计算等多种计算范式. 特点: 1.轻 Spark ...