UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)
意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error
输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中最多有两个 那么就非常easy了 遇到字母直接入栈 遇到反括号计算后入栈 然后就得到结果了
#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N = 1000;
int st[N], row[N], col[N], r[N], c[N]; int main()
{
int n, ans, top;
scanf("%d", &n);
char na[3], s[N];
for(int i = 1; i <= n; ++i)
{
scanf("%s", na);
int j = na[0] - 'A';
scanf("%d%d", &row[j], &col[j]);
} while(~scanf("%s", &s))
{
int i;
for(i = 0 ; i < 26; ++i)
c[i] = col[i], r[i] = row[i];
ans = top = 0; for(i = 0; s[i] != '\0'; ++i)
{
if(isalpha(s[i]))
{
int j = s[i] - 'A';
st[++top] = j;
} else if(s[i] == ')')
{
if(r[st[top]] != c[st[top - 1]]) break;
else
{
--top;
c[st[top]] = c[st[top + 1]];
ans += (r[st[top]] * c[st[top]] * r[st[top + 1]]);
}
}
}
if(s[i] == '\0') printf("%d\n", ans);
else printf("error\n");
}
return 0;
}
Matrix Chain Multiplication |
Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary.
However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.
Input Specification
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n ( ),
representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):
SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
Output Specification
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices.
Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))
Sample Output
0
0
0
error
10000
UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)的更多相关文章
- UVA——442 Matrix Chain Multiplication
442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...
- UVA - 442 Matrix Chain Multiplication(栈模拟水题+专治自闭)
题目: 给出一串表示矩阵相乘的字符串,问这字符串中的矩阵相乘中所有元素相乘的次数. 思路: 遍历字符串遇到字母将其表示的矩阵压入栈中,遇到‘)’就将栈中的两个矩阵弹出来,然后计算这两个矩阵的元素相乘的 ...
- UVa 442 Matrix Chain Multiplication(栈的应用)
题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...
- stack UVA 442 Matrix Chain Multiplication
题目传送门 题意:给出每个矩阵的行列,计算矩阵的表达式,如果错误输出error,否则输出答案 分析:表达式求值,stack 容器的应用:矩阵的表达式求值A 矩阵是a * b,B 矩阵是b * c,则A ...
- UVA442 Matrix Chain Multiplication 矩阵运算量计算(栈的简单应用)
栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到) ...
- 例题6-3 Matrix Chain Multiplication ,Uva 442
这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...
- UVA 442 二十 Matrix Chain Multiplication
Matrix Chain Multiplication Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %l ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- ACM学习历程——UVA442 Matrix Chain Multiplication(栈)
Description Matrix Chain Multiplication Matrix Chain Multiplication Suppose you have to evaluate ...
随机推荐
- 中介者模式 C++ 实现
#include<iostream> #include<string> #include<vector> #include<cstdlib> using ...
- JS - 点击 “+” 、“-” 改变数字
效果: 代码: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Test.a ...
- System.getProperty("catalina.home")
System.getProperty("catalina.base"),服务器配置目录
- 【Demo 0009】表视图控制器
本章学习要点: 1. 掌握表视图控制器结构; 2. 掌握表视图控制器的基本使用; 3. 掌握表视图表格的基本使用: 4. 掌握自定义表视图表格及 ...
- hao947 : Mybatis resultMap配置插入和主键自增返回 : 好947
映射配置文件 好947 <!-- type:映射实体类的数据类型 id:resultMap的唯一标识 --> <resultMap type="person" ...
- KMP 知识点总结
KMP算法是BF算法的改进,主要是消除了主串指针的回溯,提高算法效率. 先简单介绍一下BF算法: 基本思路: 从目标串s的第一个字符开始和模式串的第一个字符比较,相等逐个比较后续字符,否则从目标串的第 ...
- html name id, 与服务器交互必须有name
html name id, 与服务器交互必须有name 在HTML中元素的ID和Name的区别和联系. 今天写了个测试,在php脚本里怎么也获取不到$_POST['userName']的值,经检查在h ...
- C++经典笔试题及参考答案-趋势科技
1.static有什么用途?(请至少说明两种) 答案:1)在函数体,一个被声明为静态的变量在这一函数被调用过程中维持其值不变. 2)在模块内(但在函数体外),一个被声明为静态的变量可以被模块内所用函数 ...
- POJ 2991 Crane(线段树+计算几何)
POJ 2991 Crane 题目链接 题意:给定一个垂直的挖掘机臂.有n段,如今每次操作能够旋转一个位置,把[s, s + 1]专程a度,每次旋转后要输出第n个位置的坐标 思路:线段树.把每一段当成 ...
- 参数传递方法(Delphi1.0与win16API使用pascal方法,即从左到右)
参数传递方法李维的InsideVCL<第一章>中提到Windows定义的回调函数typedef LRESULT (CALLBACK*WNDPROC)(HWND,UNIT,WPARAM,LP ...