hive 调优总结
一、join优化
做join之前对数据进行预处理,减少参加join的数据量,把数据量少的表放入内存中,制作map端的join
应该将条目少的表/子查询放在 Join 操作符的左边。原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生内存溢出错误的几率。
Join查找操作中如果存在多个join,且所有参与join的表中其参与join的key都相同,则会将所有的join合并到一个mapred程序中。
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1) 在一个mapre程序中执行join SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2) 在两个mapred程序中执行join
Map join的关键在于join操作中的某个表的数据量很小
SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key
Mapjoin 的限制是无法执行a FULL/RIGHT OUTER JOIN b,和map join相关的Hive参数:
hive.join.emit.interval
hive.mapjoin.size.key
hive.mapjoin.cache.numrows
由于join操作是在where操作之前执行,所以当你在执行join时,where条件并不能起到减少join数据的作用;
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key) WHERE a.ds='2009-07-07' AND b.ds='2009-07-07' 最好修改为: SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key AND b.ds='2009-07-07' AND a.ds='2009-07-07')
在join操作的每一个mapred程序中,hive都会把出现在join语句中相对靠后的表的数据stream化,相对靠前的变的数据缓存在内存中。当然,也可以手动指定stream化的表:
SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
二、group by 优化
Map端聚合,首先在map端进行初步聚合,最后在reduce端得出最终结果,相关参数:
· hive.map.aggr = true是否在 Map 端进行聚合,默认为 True
· hive.groupby.mapaggr.checkinterval = 100000在 Map 端进行聚合操作的条目数目
数据倾斜聚合优化,设置参数hive.groupby.skewindata = true,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
简单来说就是设置参数hive.groupby.skewindata = true
三、合并小文件
文件数目过多,会给 HDFS 带来压力,并且会影响处理效率,可以通过合并 Map 和 Reduce 的结果文件来消除这样的影响:
· hive.merge.mapfiles = true是否和并 Map 输出文件,默认为 True · hive.merge.mapredfiles = false是否合并 Reduce 输出文件,默认为 False · hive.merge.size.per.task = 256*1000*1000合并文件的大小
四、Hive实现(not) in
通过left outer join进行查询,(假设B表中包含另外的一个字段 key1
select a.key from a left outer join b on a.key=b.key where b.key1 is null
通过left semi join 实现 in
SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key)
Left semi join 的限制:join条件中右边的表只能出现在join条件中。
五、排序优化
Order by 实现全局排序,一个reduce实现,效率低
Sort by 实现部分有序,单个reduce输出的结果是有序的,效率高,通常和DISTRIBUTE BY关键字一起使用(DISTRIBUTE BY关键字 可以指定map 到 reduce端的分发key)
CLUSTER BY col1 等价于DISTRIBUTE BY col1 SORT BY col1
六、使用分区
Hive中的每个分区都对应hdfs上的一个目录,分区列也不是表中的一个实际的字段,而是一个或者多个伪列,在表的数据文件中实际上并不保存分区列的信息与数据。Partition关键字中排在前面的为主分区(只有一个),后面的为副分区
静态分区:静态分区在加载数据和使用时都需要在sql语句中指定
案例:(stat_date='20120625',province='hunan')
动态分区:使用动态分区需要设置hive.exec.dynamic.partition参数值为true,默认值为false,在默认情况下,hive会假设主分区时静态分区,副分区使用动态分区;如果想都使用动态分区,需要设置set hive.exec.dynamic.partition.mode=nostrick,默认为strick
案例:(stat_date='20120625',province)
七、Distinct 使用
Hive支持在group by时对同一列进行多次distinct操作,却不支持在同一个语句中对多个列进行distinct操作。
八、Hql使用自定义的mapred脚本
注意事项:在使用自定义的mapred脚本时,关键字MAP REDUCE 是语句SELECT TRANSFORM ( ... )的语法转换,并不意味着使用MAP关键字时会强制产生一个新的map过程,使用REDUCE关键字时会产生一个red过程。
自定义的mapred脚本可以是hql语句完成更为复杂的功能,但是性能比hql语句差了一些,应该尽量避免使用,如有可能,使用UDTF函数来替换自定义的mapred脚本
九、UDTF
UDTF将单一输入行转化为多个输出行,并且在使用UDTF时,select语句中不能包含其他的列,UDTF不支持嵌套,也不支持group by 、sort by等语句。如果想避免上述限制,需要使用lateral view语法,案例:
select a.timestamp, get_json_object(a.appevents, '$.eventid'), get_json_object(a.appenvets, '$.eventname') from log a; select a.timestamp, b.* from log a lateral view json_tuple(a.appevent, 'eventid', 'eventname') b as f1, f2;
其中,get_json_object为UDF函数,json_tuple为UDTF函数。
UDTF函数在某些应用场景下可以大大提高hql语句的性能,如需要多次解析json或者xml数据的应用场景。
十、聚合函数count和sum
Count和sum函数可能是在hql语句中使用的最为频繁的两个聚合函数了,但是在hive中count函数在计算distinct value时支持加入条件过滤。
hive 调优总结的更多相关文章
- 【Hive六】Hive调优小结
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 ...
- 【Hive】Hive笔记:Hive调优总结——数据倾斜,join表连接优化
数据倾斜即为数据在节点上分布不均,是常见的优化过程中常见的需要解决的问题.常见的Hive调优的方法:列剪裁.Map Join操作. Group By操作.合并小文件. 一.表现 1.任务进度长度为99 ...
- Hive调优笔记
Hive调优 先记录了这么多,日后如果有遇到,再补充. fetch模式 <property> <name>hive.fetch.task.conversion</name ...
- (转) hive调优(2)
hive 调优(二)参数调优汇总 在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maxi ...
- (转)hive调优(1) coding调优
hive 调优(一)coding调优 本人认为hive是很好的工具,目前支持mr,tez,spark执行引擎,有些大公司原来封装的sparksql,开发py脚本,但是目前hive支持spark引擎(不 ...
- hive 调优(二)参数调优汇总
在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker ...
- 【Hadoop离线基础总结】Hive调优手段
Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...
- Hive调优相关
前言 Hive是由Facebook 开源用于解决海量结构化日志的数据统计,是基于Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类 SQL查询功能. 在资源有限的情况下,提 ...
- hive 调优手段
调优手段 ()利用列裁剪 当待查询的表字段较多时,选取需要使用的字段进行查询,避免直接select *出大表的所有字段,以免当使用Beeline查询时控制台输出缓冲区被大数据量撑爆. ()JOIN避免 ...
- Hive调优
Hive存储格式选择 和Hive 相关优化: 压缩参考 Hive支持的存储数的格式主要有:TEXTFILE .SEQUENCEFILE.ORC.PARQUET. 文件存储格式 列式存储和行式存储 行存 ...
随机推荐
- Centos6.5中安装和配置vsftp详细总结
一.vsftp安装篇 #查看是否安装:rpm -qa|grep vsftpd#卸载vsftpdrpm -e vsftpd-2.2.2-11.el6_3.1x86_64 --nodeps# 安装vsft ...
- Windows 10 安装SVN 不显示状态图标--解决方法
升级win10以后,什么都正常,就是svn版本库图标不见了,图标的显示有助于我们定位代码的修改及提交情况,该怎么办呢? 下面分享详细的解决办法亲测有用: 其实也比较简单, 在注册表中找到此项: HKE ...
- salesforce 零基础学习(六十)Wizard样式创建数据
项目中表之间关联关系特别多,比如三个表中A,B,C C作为主表,A,B作为从表,有时候C表需要创建数据时,同时需要创建A,B两个表的数据,这种情况下,使用Wizard样式会更加友好. 以Goods_ ...
- MySQL基础笔记
一.登录参数 -D 打开指定数据库 -h 服务器名称 -p 密码 -P 端口 -u 用户名 -V 输出版本信息并退出 --prompt 提示符 mysql> ,或者登陆后 用prompt命令 提 ...
- java单例设计模式
单例模式的特点: 1.单例类只能有一个对象(实例). 2.单例类必须自己创建自己的唯一实例 . 3.单例类必须给所有其他对象提供这一实例. 设置步骤: 1.将对象的应用成员变量用private来修饰. ...
- C#异常处理经验(原则与方法)
本文是异常处理经验性的文章,其实跟C#关系也不大.比较适合刚刚熟悉异常语法,而缺乏实战的读者.当然,经验老练的读者也可指出不足.给予意见.补充说明,一起完善文章,分享更多知识与经验. 1 ...
- 06.GitHub实战系列~6.过滤器过滤掉的文件如何上传
比如我想发布一个软件版本供普通人下载: Git库建立了VS的过滤规则后 dll 和 exe 是自动过滤的,这时候我们得加参数(看图)git add xxx -f
- spring boot(二):web综合开发
上篇文章介绍了Spring boot初级教程:spring boot(一):入门篇,方便大家快速入门.了解实践Spring boot特性:本篇文章接着上篇内容继续为大家介绍spring boot的其它 ...
- Oracle逻辑迁移某业务用户及数据
1.确定基本信息 2.源数据库导出 3.目的数据库导入 4.逻辑迁移注意事项 1.确定基本信息 确定基本信息: 源数据库所在系统类型:________ 源数据库地址:__.__.__.__ 源数据库版 ...
- go语言注释
Go语言注释实例代码教程 - Go支持C语言风格的/* */块注释,也支持C++风格的//行注释. 当然,行注释更通用,块注释主要用于针对包的详细说明或者屏蔽大块的代码. 每个包都应有一个包注解,即 ...