一,    最长递增子序列问题的描述

设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。

比如int* inp = {9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2};

二,解决:

1.用一个临时数组tmp保存这样一种状态:tmp[i]表示以i为终点的递增序列的长度;

比如inp = {3,2,5}那么tmp = {1, 1, 2},其中tmp[2]=2表示包含i=2位(inp[2]=5)的LIS的个数,即序列{3,5},个数为2;

2.假设已经知道了tmp[0]到tmp[n-1],那我们如何通过tmp[0]到tmp[n-1]的状态求得tmp[n]的状态?

比如inp = {3,2,5},已经求得tmp[0]=1,tmp[1]=1,怎么求tmp[2]?

如果i<2那,i就有可能在2为终点的LIS序列上,那以2为终点的递增序列的长度就至少是i的最长序列+1,那么就必须满足以下两个条件:

inp[i]<inp[n]          tmp[i]+1>tmp[n]

比如i=0时,inp[0]=3<inp[n]=5且tmp[0]+1=2>tmp[2]=1(tmp[i]初值都为1);则赋值tmp[2] = tmp[0]+1=2;

继续比较i=1,此时inp[1]=2<inp[n]=5且tmp[1]+1=2不大于tmp[2]=2;

一直循环到n-1位为止!最后得到tmp = {1, 1, 2};

其中tmp的最大元素即为LIS的最大长度!

3.我们如何输出LIS的所有的值呢?

其实我们只需要知道LIS中,每个元素的前面一位元素的位置即可:

比如tmp = {1, 1, 2}的最大值是2,该LIS最后一位元素出现在i=2位,如果我们保存inp[2]=5在LIS中前面的那个元素,以此类推,我们就能找到LIS中所有元素;

比如{3,2,5}的LIS是{3,5}或{2,5},我们用另一个临时数组存储它前一位元素下标int arr = {-1,-1,0},表示以inp[2]=5结尾的LIS,其前一位元素的小标是0,即inp[0]=3,这样就找到了{3,2,5}的LIS是{3,5};

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
//求最长递增子序列;
//ret[i]存放包含第i位的LIS的元素个数;
//path用于保存最长递增子序列路径;path[i]存放包含第i位的LIS的前一位元素的下标;
int LIS(int* inp,int len,int* ret,int* path){
assert(inp);
if(len <= ) return;
int i = ,max = ,maxpoint = ;
for(;i<len;i++){
ret[i] = ;
path[i] = -;//初始值都-1,为了以后输出方便,初值0时和path[0]混淆;
int j = ;
for(;j<i;j++){
if(inp[i] > inp[j] && ret[j]+ > ret[i]){
ret[i] = ret[j] + ;
path[i] = j;
}
}
printf("ret[i] ==%d\n",ret[i]);
if(ret[i] > max){
max = ret[i];
maxpoint = i;//ret中最大的那个元素的下标;
}
}
return maxpoint;
} //输出数组
void printinp(int* inp,int len){
int i = ;
for(;i<len;i++){
printf("inp = %d\n",inp[i]);
}
} //输出LIS;LIS中-1表示:包含该位元素的LIS,其前面没有元素;
void printpath(int* inp,int* path,int key){
for(;key>=;){
printf("inp[%d]=%d\n",key ,inp[key]);
if(key == ) break;//path[0]处会死循环,必须跳出
key = path[key];
}
} int main(){
int inp[] = {,,,,,,,,};
int len = sizeof(inp)/sizeof(int);
int ret[len];
int path[len];
int maxpoint = LIS(inp,len,ret,path);
printpath(inp, path, maxpoint);
}

输出结果:

ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
inp[]=
inp[]=
inp[]=
inp[]=

LIS结果是8 6 4 2,输出正确!

LIS 最长递增子序列问题的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. LIS 最长递增子序列

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  3. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. 最长递增子序列(LIS)

    最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6 ...

  5. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  6. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  7. 算法面试题 之 最长递增子序列 LIS

    找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...

  8. 最长递增子序列(lis)最长公共子序列(lcs) 最长公共上升子序列(lics)

    lis: 复杂度nlgn #include<iostream> #include<cstdio> using namespace std; ],lis[],res=; int ...

  9. 最长递增子序列(LIS)(转)

    最长递增子序列(LIS)   本博文转自作者:Yx.Ac   文章来源:勇幸|Thinking (http://www.ahathinking.com)   --- 最长递增子序列又叫做最长上升子序列 ...

随机推荐

  1. POJ 3299 Humidex(简单的问题)

    [简要题意]:什么是温度,湿度--,之间的转换.. [分析]:式已被赋予. // 252k 0Ms /* 当中exp表示的是求e的x次幂 解法就直接依据题目中的公式解决就好!! */ #include ...

  2. MVC验证11-对复杂类型使用jQuery异步验证

    原文:MVC验证11-对复杂类型使用jQuery异步验证 本篇体验使用"jQuery结合Html.BeginForm()"对复杂类型属性进行异步验证.与本篇相关的"兄弟篇 ...

  3. &lt;&lt;Python基础课程&gt;&gt;学习笔记 | 文章13章 | 数据库支持

    备注:本章介绍了比较简单,只是比较使用样品,主要假设是把握连接,利用数据库.和SQLite做演示样本 ------ Python数据库API 为了解决Python中各种数据库模块间的兼容问题,如今已经 ...

  4. ios背景更新和下载

    ios背景更新和下载 by 吴雪莹 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NS ...

  5. 它们的定义android滑动菜单

    在这里实现了两个滑动菜单效果,的拖放内容的第一部分,菜单拖出像这样的效果感觉,另一种是拖动内容.后面的内容固定菜单.我感觉有层次感的效果,如下面 第一种效果的代码实现例如以下: package com ...

  6. T-SQL: 17 个与日期时间相关的自定义函数(UDF),周日作为周的最后一天,均不受 @@DateFirst、语言版本影响!

    原文:T-SQL: 17 个与日期时间相关的自定义函数(UDF),周日作为周的最后一天,均不受 @@DateFirst.语言版本影响! CSDN 的 Blog 太滥了!无时不刻地在坏! 开始抢救性搬家 ...

  7. sql点滴38—SQL Server 2008和SQL Server 2008 R2导出数据的选项略有不同

    原文:sql点滴38—SQL Server 2008和SQL Server 2008 R2导出数据的选项略有不同 说明: 以前要将一个表中的数据导出为脚本,只有用存储过程.现在在SQL Server ...

  8. Nancy和MVC的简单对比

    Nancy和MVC的简单对比 在上一篇的.NET轻量级MVC框架:Nancy入门教程(一)——初识Nancy中,简单介绍了Nancy,并写了一个Hello,world.看到大家的评论,都在问Nancy ...

  9. Windows Azure VM两shut down 道路

    今天调查Azure当价格,找到下面的语句,来自http://azure.microsoft.com/en-us/pricing/details/virtual-machines/ * If my de ...

  10. hdu2899 Strange fuction

    在区间(0,100).在恒大二阶导数0.f(x)有极小值.用的最低要求的一阶导数值点: #include<math.h> #include<stdio.h> #include& ...