一,    最长递增子序列问题的描述

设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。

比如int* inp = {9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2};

二,解决:

1.用一个临时数组tmp保存这样一种状态:tmp[i]表示以i为终点的递增序列的长度;

比如inp = {3,2,5}那么tmp = {1, 1, 2},其中tmp[2]=2表示包含i=2位(inp[2]=5)的LIS的个数,即序列{3,5},个数为2;

2.假设已经知道了tmp[0]到tmp[n-1],那我们如何通过tmp[0]到tmp[n-1]的状态求得tmp[n]的状态?

比如inp = {3,2,5},已经求得tmp[0]=1,tmp[1]=1,怎么求tmp[2]?

如果i<2那,i就有可能在2为终点的LIS序列上,那以2为终点的递增序列的长度就至少是i的最长序列+1,那么就必须满足以下两个条件:

inp[i]<inp[n]          tmp[i]+1>tmp[n]

比如i=0时,inp[0]=3<inp[n]=5且tmp[0]+1=2>tmp[2]=1(tmp[i]初值都为1);则赋值tmp[2] = tmp[0]+1=2;

继续比较i=1,此时inp[1]=2<inp[n]=5且tmp[1]+1=2不大于tmp[2]=2;

一直循环到n-1位为止!最后得到tmp = {1, 1, 2};

其中tmp的最大元素即为LIS的最大长度!

3.我们如何输出LIS的所有的值呢?

其实我们只需要知道LIS中,每个元素的前面一位元素的位置即可:

比如tmp = {1, 1, 2}的最大值是2,该LIS最后一位元素出现在i=2位,如果我们保存inp[2]=5在LIS中前面的那个元素,以此类推,我们就能找到LIS中所有元素;

比如{3,2,5}的LIS是{3,5}或{2,5},我们用另一个临时数组存储它前一位元素下标int arr = {-1,-1,0},表示以inp[2]=5结尾的LIS,其前一位元素的小标是0,即inp[0]=3,这样就找到了{3,2,5}的LIS是{3,5};

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
//求最长递增子序列;
//ret[i]存放包含第i位的LIS的元素个数;
//path用于保存最长递增子序列路径;path[i]存放包含第i位的LIS的前一位元素的下标;
int LIS(int* inp,int len,int* ret,int* path){
assert(inp);
if(len <= ) return;
int i = ,max = ,maxpoint = ;
for(;i<len;i++){
ret[i] = ;
path[i] = -;//初始值都-1,为了以后输出方便,初值0时和path[0]混淆;
int j = ;
for(;j<i;j++){
if(inp[i] > inp[j] && ret[j]+ > ret[i]){
ret[i] = ret[j] + ;
path[i] = j;
}
}
printf("ret[i] ==%d\n",ret[i]);
if(ret[i] > max){
max = ret[i];
maxpoint = i;//ret中最大的那个元素的下标;
}
}
return maxpoint;
} //输出数组
void printinp(int* inp,int len){
int i = ;
for(;i<len;i++){
printf("inp = %d\n",inp[i]);
}
} //输出LIS;LIS中-1表示:包含该位元素的LIS,其前面没有元素;
void printpath(int* inp,int* path,int key){
for(;key>=;){
printf("inp[%d]=%d\n",key ,inp[key]);
if(key == ) break;//path[0]处会死循环,必须跳出
key = path[key];
}
} int main(){
int inp[] = {,,,,,,,,};
int len = sizeof(inp)/sizeof(int);
int ret[len];
int path[len];
int maxpoint = LIS(inp,len,ret,path);
printpath(inp, path, maxpoint);
}

输出结果:

ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
inp[]=
inp[]=
inp[]=
inp[]=

LIS结果是8 6 4 2,输出正确!

LIS 最长递增子序列问题的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. LIS 最长递增子序列

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  3. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. 最长递增子序列(LIS)

    最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6 ...

  5. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  6. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  7. 算法面试题 之 最长递增子序列 LIS

    找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...

  8. 最长递增子序列(lis)最长公共子序列(lcs) 最长公共上升子序列(lics)

    lis: 复杂度nlgn #include<iostream> #include<cstdio> using namespace std; ],lis[],res=; int ...

  9. 最长递增子序列(LIS)(转)

    最长递增子序列(LIS)   本博文转自作者:Yx.Ac   文章来源:勇幸|Thinking (http://www.ahathinking.com)   --- 最长递增子序列又叫做最长上升子序列 ...

随机推荐

  1. Oracle免费的便捷Web应用开发框架

    Oracle免费的便捷Web应用开发框架 APEX 总体来说,APEX是我见过最便捷最高效的开发框架,用起来比PHP还舒服.上手简单,学习成本极低,曾经有个做行政的小女生,在我指导下两天就可以开发出简 ...

  2. js小记 function 的 length 属性

    原文:js小记 function 的 length 属性 [1,2,3]., ,这个略懂js的都知道. 但是  eval.length,RegExp.length,"".toStr ...

  3. canvas绘制贝塞尔曲线

    原文:canvas绘制贝塞尔曲线 1.绘制二次方贝塞尔曲线 quadraticCurveTo(cp1x,cp1y,x,y); 其中参数cp1x和cp1y是控制点的坐标,x和y是终点坐标 数学公式表示如 ...

  4. C_数据结构

    线性结构 线性结构的特点是:在数据元素的飞空有限集中,(1)存在唯一的一个被称作“第一个”的数据元素:(2) 存在唯一一个被称做“最后一个”的数据元素:(3)除第一个外,集合中的每一个元素都只有一个前 ...

  5. .net mvc4 从客户端中检测到有潜在危险的 Request.Form 值

    [ValidateInput(false)] 即可, 网上说什么Web.Config 里面改,一点用都没有 [HttpPost] [ActionName("Edit")] [Val ...

  6. OC第四课

    主要内容:NSString.NSArray.NSNumber 一.苹果公司的帮助文档(API) 学会查看API对于后续的编程有很好的帮助 进入方法: Xcode ->Help -> Doc ...

  7. Google maps API开发

    原文:Google maps API开发 Google maps API开发(一) 最近做一个小东西用到google map,突击了一下,收获不小,把自己学习的一些小例子记录下来吧 一.加载Googl ...

  8. iptables的配置文件/etc/sysconfig/iptables不存在怎么办

    iptables的配置文件/etc/sysconfig/iptables不存在怎么办 首先要看一下iptables是否安装了,使用service iptables status或yum info ip ...

  9. 第1章3节《MonkeyRunner源码剖析》概述:架构(原创)

    天地会珠海分舵注:本来这一系列是准备出一本书的,详情请见早前博文“寻求合作伙伴编写<深入理解 MonkeyRunner>书籍“.但因为诸多原因,没有如愿.所以这里把草稿分享出来,所以错误在 ...

  10. Spring之SpringMVC的MethodNameResolver(源码)分析

    前言 在介绍SpringMVC  的Controller的具体实现中,我们讲到了MultiActionController.在获取处理请求对于的方法的时候我们用到了下面的代码,来自于MultiActi ...