一,    最长递增子序列问题的描述

设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。

比如int* inp = {9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2};

二,解决:

1.用一个临时数组tmp保存这样一种状态:tmp[i]表示以i为终点的递增序列的长度;

比如inp = {3,2,5}那么tmp = {1, 1, 2},其中tmp[2]=2表示包含i=2位(inp[2]=5)的LIS的个数,即序列{3,5},个数为2;

2.假设已经知道了tmp[0]到tmp[n-1],那我们如何通过tmp[0]到tmp[n-1]的状态求得tmp[n]的状态?

比如inp = {3,2,5},已经求得tmp[0]=1,tmp[1]=1,怎么求tmp[2]?

如果i<2那,i就有可能在2为终点的LIS序列上,那以2为终点的递增序列的长度就至少是i的最长序列+1,那么就必须满足以下两个条件:

inp[i]<inp[n]          tmp[i]+1>tmp[n]

比如i=0时,inp[0]=3<inp[n]=5且tmp[0]+1=2>tmp[2]=1(tmp[i]初值都为1);则赋值tmp[2] = tmp[0]+1=2;

继续比较i=1,此时inp[1]=2<inp[n]=5且tmp[1]+1=2不大于tmp[2]=2;

一直循环到n-1位为止!最后得到tmp = {1, 1, 2};

其中tmp的最大元素即为LIS的最大长度!

3.我们如何输出LIS的所有的值呢?

其实我们只需要知道LIS中,每个元素的前面一位元素的位置即可:

比如tmp = {1, 1, 2}的最大值是2,该LIS最后一位元素出现在i=2位,如果我们保存inp[2]=5在LIS中前面的那个元素,以此类推,我们就能找到LIS中所有元素;

比如{3,2,5}的LIS是{3,5}或{2,5},我们用另一个临时数组存储它前一位元素下标int arr = {-1,-1,0},表示以inp[2]=5结尾的LIS,其前一位元素的小标是0,即inp[0]=3,这样就找到了{3,2,5}的LIS是{3,5};

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
//求最长递增子序列;
//ret[i]存放包含第i位的LIS的元素个数;
//path用于保存最长递增子序列路径;path[i]存放包含第i位的LIS的前一位元素的下标;
int LIS(int* inp,int len,int* ret,int* path){
assert(inp);
if(len <= ) return;
int i = ,max = ,maxpoint = ;
for(;i<len;i++){
ret[i] = ;
path[i] = -;//初始值都-1,为了以后输出方便,初值0时和path[0]混淆;
int j = ;
for(;j<i;j++){
if(inp[i] > inp[j] && ret[j]+ > ret[i]){
ret[i] = ret[j] + ;
path[i] = j;
}
}
printf("ret[i] ==%d\n",ret[i]);
if(ret[i] > max){
max = ret[i];
maxpoint = i;//ret中最大的那个元素的下标;
}
}
return maxpoint;
} //输出数组
void printinp(int* inp,int len){
int i = ;
for(;i<len;i++){
printf("inp = %d\n",inp[i]);
}
} //输出LIS;LIS中-1表示:包含该位元素的LIS,其前面没有元素;
void printpath(int* inp,int* path,int key){
for(;key>=;){
printf("inp[%d]=%d\n",key ,inp[key]);
if(key == ) break;//path[0]处会死循环,必须跳出
key = path[key];
}
} int main(){
int inp[] = {,,,,,,,,};
int len = sizeof(inp)/sizeof(int);
int ret[len];
int path[len];
int maxpoint = LIS(inp,len,ret,path);
printpath(inp, path, maxpoint);
}

输出结果:

ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
ret[i] ==
inp[]=
inp[]=
inp[]=
inp[]=

LIS结果是8 6 4 2,输出正确!

LIS 最长递增子序列问题的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. LIS 最长递增子序列

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  3. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. 最长递增子序列(LIS)

    最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6 ...

  5. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  6. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  7. 算法面试题 之 最长递增子序列 LIS

    找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...

  8. 最长递增子序列(lis)最长公共子序列(lcs) 最长公共上升子序列(lics)

    lis: 复杂度nlgn #include<iostream> #include<cstdio> using namespace std; ],lis[],res=; int ...

  9. 最长递增子序列(LIS)(转)

    最长递增子序列(LIS)   本博文转自作者:Yx.Ac   文章来源:勇幸|Thinking (http://www.ahathinking.com)   --- 最长递增子序列又叫做最长上升子序列 ...

随机推荐

  1. linux_UBUNTU 12.04 上使用 SQUID 架设HTTP正向代理服务器

    配置普通HTTP正向代理 安装   1 sudo apt-get install squid squid-common 配置 squid3   1 sudo vim /etc/squid3/squid ...

  2. 自己定义View之绘制圆环

    一.RingView 自己定义的view,构造器必须重写,至于重写哪个方法,參考例如以下: ①假设须要改变View绘制的图像,那么须要重写OnDraw方法.(这也是最经常使用的重写方式.) ②假设须要 ...

  3. 【百度地图API】你看过房产地图吗?你知道房产标注是如何建立的吗?

    原文:[百度地图API]你看过房产地图吗?你知道房产标注是如何建立的吗? 你是不是看过很多房产网站?例如安居客,新浪乐居. 你是不是也想做一个能写文字的标注? 你知道怎么去实现麼? 其实,上图这样的标 ...

  4. Swift语言指南(四)--类型安全和类型推断

    原文:Swift语言指南(四)--类型安全和类型推断 Swift是一门类型安全语言,类型安全语言需要代码里值的类型非常明确.如果你的代码中有部分值需要String类型,你就不能错误地传递Int. 鉴于 ...

  5. Oracle利用存储过程性 实现分页

    分页的简单配置 在上一次已经说过了 这边说说怎么在存储过程中实现分页 首先建立存储过程 參考 http://www.cnblogs.com/gisdream/archive/2011/11/16/22 ...

  6. 当今最流行的Node.js应用开发框架简介

    快速开发而又容易扩展,高性能且鲁棒性强.Node.js的出现让所有网络应用开发者的这些梦想成为现实.但是,有如其他新的开发语言技术一样,从头开始使用Node.js的最基本功能来编写代码构建应用是一个非 ...

  7. IOS开发之——使用SBJson拼接Json字符串

    SBJson包的下载地址在上一篇文章中. 能够使用NSDictionary中的键值对来拼接Json数据,很方便,也能够进行嵌套,直接上代码: //開始拼接Json字符串 NSDictionary *d ...

  8. Installshield脚本拷贝文件常见问题汇总

    原文:Installshield脚本拷贝文件常见问题汇总 很多朋友经常来问:为什么我用CopyFile/XCopyFile函数拷贝文件无效?引起这种情况的原因有很多,今天略微总结了一下,欢迎各位朋友跟 ...

  9. 模板专业化和模板偏特样片(template specialization and partial template specialization)

    测试环境: win7 64 g++ 4.8.1 /*************************************************************************** ...

  10. C# DataTable 转换成JSON数据

    原文:C# DataTable 转换成JSON数据 using System; using System.Collections.Generic; using System.Data; using S ...