norm(A,p)
当A是向量时
norm(A,p) Returns sum(abs(A).^zhip)^(/p), for any <= p <= ∞.
norm(A) Returns norm(A,)
norm(A,inf) Returns max(abs(A)).
norm(A,-inf) Returns min(abs(A)).
当A是矩阵时
n = norm(A) returns the largest singular value of A, max(svd(A))
n = norm(A,) The -norm, or largest column sum of A, max(sum(abs(A)).
n = norm(A,) The largest singular value (same as norm(A)).
n = norm(A,inf) The infinity norm, or largest row sum of A, max(sum(abs(A')))
n = norm(A,'fro') The Frobenius-norm of matrix A, sqrt(sum(diag(A'*A))).

A'*A的n个非负特征值的平du方根叫作矩阵A的奇异值

解 (i)∇f (x) =(2x() ,50x() )T
编写 M 文件detaf.m,定义函数 f (x)及其梯度列向量如下
function [f,df]=detaf(x);
f=x()^+*x()^;
df=[*x()
*x()];
(ii)编写主程序文件zuisu.m如下:
clc
x=[;];
[f0,g]=detaf(x);
while norm(g)>0.000001
p=-g/norm(g);
t=1.0;f=detaf(x+t*p);
while f>f0
t=t/;
f=detaf(x+t*p);
end
x=x+t*p;
[f0,g]=detaf(x);
end
x,f0

matlab 梯度法(最速下降法)的更多相关文章

  1. 再谈 最速下降法/梯度法/Steepest Descent

    转载请注明出处:http://www.codelast.com/ 最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了 ...

  2. 【转】再谈 最速下降法/梯度法/Steepest Descent

    转载请注明出处:http://www.codelast.com/ 最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了 ...

  3. 最速下降法--MATLAB程序

    function x = fxsteep(f,e,a,b)x1 = a;x2 = b;Q = fxhesson(f,x1,x2);x0 = [x1,x2]';temp = [x0];fx1 = dif ...

  4. 每天一个小算法(matlab armijo)

    下面是 armijo线搜索+最速下降法的小程序,matlab用的很不熟,费了不少劲. 函数: function g=fun_obj(x) syms a b f = 1/2*a^2+b^2-a*b-2* ...

  5. matlab 工具箱下载地址

    1.平面操作工具箱 http://cathy.ijs.si/~leon/planman.html 2.SimMechanics 工具箱 (这个好像不是免费的) http://www.mathworks ...

  6. 基于matlab的边缘提取方法的比较

    1.Matlab简述 Matlab是国际上最流行的科学与工程计算的软件工具,它起源于矩阵运算,已经发展成一种高度集成的计算机语言.有人称它为“第四代”计算机语言,它提供了强大的科学运算.灵活的程序设计 ...

  7. 工程优化方法中的“最速下降法”和“DFP拟牛顿法”的 C 语言实现

    这个小程序是研一上学期的“工程优化”课程的大作业.其实这题本可以用 MATLAB 实现,但是我为了锻炼自己薄弱的编码能力,改为用 C 语言实现.这样,就得自己实现矩阵的运算(加减乘除.求逆.拷贝):难 ...

  8. 机器学习笔记(一)—— 线性回归问题与Matlab求解

    给你多组数据集,例如给你很多房子的面积.房子距离市中心的距离.房子的价格,然后再给你一组面积. 距离,让你预测房价.这类问题称为回归问题. 回归问题(Regression) 是给定多个自变量.一个因变 ...

  9. Matlab 稀疏矩阵函数

    eye 单位矩阵zeros 全零矩阵ones 全1矩阵rand 均匀分布随机阵genmarkov 生成随机Markov矩阵linspace 线性等分向量logspace 对数等分向量logm 矩阵对数 ...

随机推荐

  1. 【Mac】屏蔽系统升级更新

    三行代码解决Mac升级弹窗,小红点数字1

  2. Java——删除Map集合中key-value值

    通过迭代器删除Map集合中的key-value值 Iterator<String> iter = map.keySet().iterator(); while(iter.hasNext() ...

  3. MySQL浮点数和定点数

    MySQL 分为两种方式:浮点数和定点数.浮点数包括 float(单精度)和 double(双精度),而定点数则只有 decimal 一种表示.定点数在 MySQL 内部以字符串形式存放,比浮点数更精 ...

  4. VSCode开发Vue-代码格式化最完美设置

    Vue在VsCode上面的开发,代码格式话是个老大难问题了. 有很多文章介绍Prettier四个配置方法,以及如何启用.但是结果就是:一个一个配完,还是看着难受 现在尝试出一种最完美格式化方式,分享出 ...

  5. Spark SQL源码解析(五)SparkPlan准备和执行阶段

    Spark SQL原理解析前言: Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述 Spark SQL源码解析(二)Antlr4解析Sql并生成树 Spark SQL源码解析(三 ...

  6. shell判断语句

    1.test命令  也可以用[  ]来表示 返回值为0时为true,返回值为1时为false. 例1:str1=aaa,str2=bbb 1)判断字符串是否为空(省略了-n选项,-n选项是不为空,-z ...

  7. [256个管理学理论]006.刺猬效应(Hedgehog Effect)

    刺猬效应(Hedgehog Effect) 来自于大洋彼岸的让你看不懂的解释: 刺猬效应(刺猬法则)就是人际交往中的“心理距离效应”.人与人之间都应该保持这条底线,过犹不及. 刺猬效应强调的就是人际交 ...

  8. Alpha冲刺——4.30

    这个作业属于哪个课程 软件工程 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 Alpha冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.规 ...

  9. JavaSE (四)程序流程控制 -- if 、switch、for、while

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 目录 前置: * . 从键盘读取数据: 1.分支结构 1.1 if-else结构 1.2 switch- ...

  10. Java实现 LeetCode 594 最长和谐子序列(滑动窗口)

    594. 最长和谐子序列 和谐数组是指一个数组里元素的最大值和最小值之间的差别正好是1. 现在,给定一个整数数组,你需要在所有可能的子序列中找到最长的和谐子序列的长度. 示例 1: 输入: [1,3, ...